
File Repository Documentation
Release 2

Wolnosciowiec Team

Feb 25, 2020

Contents:

1 First steps 3

2 Manual installation 5

3 Installation with docker 7

4 Development environment setup 11

5 Post-installation 13

6 Configuration reference 17
6.1 Application configuration . 17
6.2 Permissions list . 21
6.3 Docker container extra parameters . 26
6.4 PostgreSQL support . 26

7 Docker, releases and versioning 27

8 Using postman to manage the application 29

9 Authorization 33
9.1 Creating a token . 33
9.2 Searching tokens . 35
9.3 Looking up a token . 37
9.4 Revoking a token . 38
9.5 Managing authentication using console commands . 39
9.6 Token load hierarchy . 41

10 Files storage 43
10.1 Security . 43
10.2 Uploading . 44
10.3 Downloading . 45
10.4 Aliasing filenames (migrating existing files to File Repository) . 46
10.5 Hotlink protection - personalizing URLs for your visitors . 47
10.6 Listing and searching . 49

11 Backup 51
11.1 Getting started . 51

i

11.2 Managing collections . 52
11.3 Authorization . 54
11.4 Backups: Upload, deletion and versioning . 55
11.5 Data replication . 58
11.6 Managing collections from shell . 59

12 MinimumUI 61
12.1 Quick start in steps . 61
12.2 Endpoints . 61

13 SecureCopy 69
13.1 SecureCopy API endpoints . 70

14 Bahub API client 71
14.1 Configuration reference . 71
14.2 Basic usage . 77
14.3 Monitoring errors with Sentry . 79
14.4 Slack/Mattermost notifications . 80
14.5 Setup . 80
14.6 Using docker container . 80
14.7 Without docker . 81

15 Shell access 83
15.1 Introduction . 83
15.2 Docker container concept . 83

16 General guide for Administrators, DevOps and Developers 87

17 From authors 89

ii

File Repository Documentation, Release 2

File Repository is a modern API application dedicated for storing files. It is able to use various storage backends
including AWS S3, Dropbox, Google Drive and just filesystem. Lightweight, requires just PHP7 and at least SQLite3
or MySQL (other databases can be also supported in future due to using ORM).

Main functionality:

• Strict access control, you can generate a token that will have access to specific actions on specific items

• Store files where you need; on AWS S3, Minio.io, FTP, local storage and others. . .

• Deduplication for non-grouped files. There will be no duplicated files stored on your disk

• Backups management, you can define a collection of file versions that can rotate on adding a new version

• API + lightweight frontend

• Ready to integrate upload forms for your applications. Only generate token and redirect a user to an url

Contents: 1

File Repository Documentation, Release 2

2 Contents:

CHAPTER 1

First steps

To start using the application you need to install PHP 7.4 with extensions listed below. The dependencies are managed
by Composer - it will also validate your environment for required extensions and PHP version.

You can also use a ready-to-use docker container instead of using host installation of PHP, if you have a possibility
always use a docker container.

Application requirements:

• PHP 7.4 or newer (with extensions: ctype, fileinfo, curl, json, openssl, pdo, pdo_mysql, pdo_pgsql, iconv)

• NodeJS 12.x + NPM (for building simple frontend at installation time)

• SQLite3, MySQL 5.7+ or PostgreSQL 10+

• Composer (PHP package manager, see packagist.org)

• make (GNU Make, we use it for build scripts)

Notice: For PostgreSQL configuration please check the configuration reference at :ref:‘postgresql_support‘ page

3

File Repository Documentation, Release 2

4 Chapter 1. First steps

CHAPTER 2

Manual installation

At first you need to create your own customized .env file with application configuration. You can create it from a
template .env.dist.

Make sure the APP_ENV is set to prod, and that the database connection settings are valid. On default settings the
application should be connecting to a SQLite3 database placed in local file, but please keep in mind, that this is not
optimal for production usage.

cd server
cp .env.dist .env
edit .env

To install the application - download dependencies, install database schema use the make task install.

make install install_frontend

All right! The application should be ready to go.

Now set up an NGINX + PHP-FPM or Apache to redirect all traffic to point at /public/index.php

For more help please visit: https://symfony.com/doc/current/setup/web_server_configuration.html

When you have the web server up and running, you can check the health check endpoint.

"test" is defined in "HEALTH_CHECK_CODE" environment variable
curl http://localhost/health?code=test

5

https://symfony.com/doc/current/setup/web_server_configuration.html

File Repository Documentation, Release 2

6 Chapter 2. Manual installation

CHAPTER 3

Installation with docker

There are at least four choices:

• Use quay.io/riotkit/file-repository image by your own and follow the configuration reference

• Generate a docker-compose.yaml using make print VARIANT=”gateway s3 postgres postgres-persistent” in env
directory, and create your own environment basing on it

• Copy the env environment from this repository and adjust to your needs

• Take a look at our compose in env directory and at configuration reference, then create a Kubernetes or other
type deployment

Proposed way to choose is the prepared docker-compose environment that is placed in env directory.

Preparing configuration of the environment:

Before you will run the environment we suggest to take a look at few configuration variables possibly most important
for you at the beginning.

• SECURITY_ADMIN_TOKEN: Will create an admin token for you automatically during container startup

• BASE_URL: Application URL (in web browser)

edit ./env/.env

For production usage please pick a fixed version
List of available tags: https://quay.io/repository/riotkit/file-repository?tab=tags
FILE_REPOSITORY_VERSION=latest-build
BASE_URL=http://localhost:8000

#
Docker Environment settings
#
COMPOSE_ENV_NAME=fr_tests

#
This token will be added during File Repository container startup

(continues on next page)

7

https://github.com/riotkit-org/file-repository/tree/master/env
https://github.com/riotkit-org/file-repository/tree/master/env
https://github.com/riotkit-org/file-repository/tree/master/env
https://github.com/riotkit-org/file-repository/tree/master/env

File Repository Documentation, Release 2

(continued from previous page)

please CHANGE IT BEFORE STARTING an application on production
#
See: https://www.uuidgenerator.net/
See: Linux command "uuidgen" from e2fsprogs package
#
SECURITY_ADMIN_TOKEN=ca6a2635-d2cb-4682-ba81-3879dd0e8a77

#
Code required to access health check endpoint
http://localhost/health?code=test
#
HEALTH_CHECK_CODE=test

#
PostgreSQL settings (when using PostgreSQL)
#
POSTGRES_USER=riotkit
POSTGRES_DB=rojava
POSTGRES_PASSWORD=rojava

#
MySQL/MariaDB settings (when using MySQL/MariaDB)
#
MYSQL_DB=rojava
MYSQL_PASSWORD=rojava
MYSQL_USER=riotkit
MYSQL_ROOT_PASSWORD=solidarity-forever

#
Minio Settings
#
MINIO_DOMAIN=s3-minio-test
MINIO_ACCESS_KEY=international_workers_association
MINIO_SECRET_KEY=six_hour_workingday_for_everybody

#
Bahub client settings
#
BAHUB_VERSION=dev

#
Backup collections
#
To generate a collection type:
make sh
./bin/console backup:create-collection -b 5 -o 10mib -c 2gib -s delete_oldest_
→˓when_adding_new -f test.gz
#
COLLECTIONS_POSTGRES_ID=946348f2-8f3c-4cf0-8827-650fb044ed39
COLLECTIONS_POSTGRES_SINGLE_DB_ID=74803fcf-6661-41b4-b063-58e8f614661a
COLLECTIONS_POSTGRES_BASE_ID=38358f25-b63e-4d70-bce2-71cda2258f70
COLLECTIONS_WWW_FILES_ID=7682aba1-38f5-4f20-a7c1-d939b3a5b928
COLLECTIONS_MYSQL_ID=43472cc8-a44b-489e-bb43-a867669a5a2c

Starting the example environment:

8 Chapter 3. Installation with docker

File Repository Documentation, Release 2

cd ./env
make up VARIANT="gateway s3 postgres persistent"

Generating a docker-compose example file:

cd ./env
make print VARIANT="gateway s3 postgres persistent"

Production tips:

• Use external non-containerized database, do backups. If you want to use containers then use replication

• Do not use SQLite3 for production. Use PostgreSQL or MySQL instead

• Mount data as volumes. Use bind-mounts to have files placed on host filesystem (volumes can be deleted,
bind-mounted files stays anyway)

• Use SECURITY_ADMIN_TOKEN environment variable to setup an administrative token to be able to log-in
into the application

• For automation, use POST_INSTALL_CMD to execute console commands to create collections and tokens with
ids your applications expects

9

File Repository Documentation, Release 2

10 Chapter 3. Installation with docker

CHAPTER 4

Development environment setup

For development purposes use the “dev” configuration, which mounts the application into the docker container, in
effect all changes are present in the application immediately without a rebuild.

You can also run the application with PostgreSQL and/or with S3 as a storage.

cd env
make up VARIANT="test"

with PostgreSQL as a database
make up VARIANT="dev test postgres"

bind application on port 80
make up VARIANT="dev test postgres gateway"

keep all of the changes between environment restarts
make up VARIANT="dev test postgres postgres-persistent gateway"

to have a good, production type configuration
make up VARIANT="s3 postgres postgres-persistent gateway"

to have a production type configuration, that can be behind reverse proxy (do not
→˓expose ports itself to host)
make up VARIANT="s3 postgres postgres-persistent"

to have server + Bahub client container and it's test containers
make up VARIANT="dev test postgres bahub-test"
make sh@bahub # here you can perform test backups upload/restore

Please check out the detailed instruction in the README file.

11

./env/README.md

File Repository Documentation, Release 2

12 Chapter 4. Development environment setup

CHAPTER 5

Post-installation

At this point you have the application, but you don’t have access to it - except if you use docker container and specify
the SECURITY_ADMIN_TOKEN, then docker container would create an admin token for you. You will need to
generate an administrative access token (if you dont have one already), to be able to create new tokens, manage
backups, upload files to storage. To achieve this goal you need to execute a simple command.

You need to execute ./bin/console auth:generate-admin-token in the project directory.

So, when you have an administrative token, then you need a second token to upload backups. It’s not recommended
to use administrative token on your servers. Recommended way is to generate a separate token, that is allowed to
upload a backup to specified collection

To do so, check all available roles in the application:

GET /auth/roles?_token=YOUR-ADMIN-TOKEN-HERE

Note: If you DO NOT KNOW HOW to perform a request, then please check the postman section

You should see something like this:

{
"status": true,
"error_code": null,
"http_code": 200,
"errors": [],
"context": {

"pagination": {
"page": 1,
"perPageLimit": 4096,
"maxPages": 1

}
},
"message": "Matches found",
"data": {

"test-token-full-permissions": "",
"internal-console-token": "",

(continues on next page)

13

File Repository Documentation, Release 2

(continued from previous page)

"upload.images": "Allows to upload images",
"upload.videos": "Allows to upload video files",
"upload.documents": "Allows to upload documents",
"upload.backup": "Allows to submit backups",
"upload.all": "Allows to upload ALL types of files regardless of mime type",
"upload.enforce_no_password": "Enforce no password for all uploads for this

→˓token",
"upload.enforce_tags_selected_in_token": "Enforce token tags. In result every

→˓uploaded file will have tags specified in token regardless if they were sent in
→˓request",

"upload.only_once_successful": "",
"security.authentication_lookup": "User can check information about ANY token

→˓",
"security.search_for_tokens": "User can browse\/search for tokens",
"security.overwrite": "User can overwrite files",
"security.generate_tokens": "User can generate tokens with ANY roles",
"security.use_technical_endpoints": "User can use technical endpoints to

→˓manage the application",
"security.revoke_tokens": "User can expire other token, so it will be not

→˓valid anymore",
"security.administrator": "Special: Marking - tokens with this marking will

→˓not be able to be revoked by non-administrators",
"security.create_predictable_token_ids": "Allow to specify token id when

→˓creating a token",
"deletion.all_files_including_protected_and_unprotected": "Delete files that

→˓do not have a password, and password protected without a password",
"view.any_file": "Allows to download ANY file, even if a file is password

→˓protected",
"view.files_from_all_tags": "List files from ANY tag that was requested, else

→˓the user can list only files by tags allowed in token",
"view.can_use_listing_endpoint_at_all": "Define that the user can use the

→˓listing endpoint (basic usage)",
"securecopy.stream": "Can use SecureCopy at all?",
"securecopy.all_secrets_read": "Read SecureCopy secrets: Encryption method,

→˓password, initialization vector. With following role can read secrets of any token
→˓in the system.",

"collections.create_new": "Allow person creating a new backup collection",
"collections.create_new.with_custom_id": "Allow to assign a specific id, when

→˓creating a collection",
"collections.allow_infinite_limits": "Allow creating backup collections that

→˓have no limits on size and length",
"collections.modify_details_of_allowed_collections": "Edit collections where

→˓token is added as allowed",
"collections.modify_any_collection_regardless_if_token_was_allowed_by_

→˓collection": "Allow to modify ALL collections. Collection don't have to allow such
→˓token which has this role",

"collections.view_all_collections": "Allow to browse any collection
→˓regardless of if the user token was allowed by it or not",

"collections.can_use_listing_endpoint": "Can use an endpoint that will allow
→˓to browse and search collections?",

"collections.manage_tokens_in_allowed_collections": "Manage tokens in the
→˓collections where our current token is already added as allowed",

"collections.delete_allowed_collections": "Delete collections where token is
→˓added as allowed",

"collections.upload_to_allowed_collections": "Upload to allowed collections",
"collections.list_versions_for_allowed_collections": "List versions for

→˓collections where the token was added as allowed",
(continues on next page)

14 Chapter 5. Post-installation

File Repository Documentation, Release 2

(continued from previous page)

"collections.delete_versions_for_allowed_collections": "Delete versions only
→˓from collections where the token was added as allowed"

}
}

To allow only uploading and browsing versions for assigned collections you may choose:

POST /auth/token/generate?_token=YOUR-ADMIN-TOKEN-THERE
{

"roles": ["upload.backup", "collections.upload_to_allowed_collections",
→˓"collections.list_versions_for_allowed_collections"],

"data": {
"tags": [],
"allowedMimeTypes": [],
"maxAllowedFileSize": 0

}
}

As the response you should get the token id that you need.

Remember the tokenId, now you can create collections and grant access for this token to your collections. Generated
token will be able to upload to collections you allow it to.

Check next steps:

1. Collection creation

2. Assigning a token to the collection

That’s all.

15

File Repository Documentation, Release 2

16 Chapter 5. Post-installation

CHAPTER 6

Configuration reference

6.1 Application configuration

When setting up application without a docker a .env file needs to be created in the root directory of the application.
The .env.dist is a template with example, reference values. If you use a docker image, then you may use those variables
as environment variables for the container.

This file is a "template" of which env vars need to be defined for your application
Copy this file to .env file for development, create environment variables when
→˓deploying to production
https://symfony.com/doc/current/best_practices/configuration.html#infrastructure-
→˓related-configuration

==
Symfony framework specific configuration
==

possible values: prod, test, dev. Use "prod" for public instances. Use "test"
→˓installing the application and changing its configuration
#APP_ENV=prod
#APP_SECRET=faec5e5fcf0ff499f53ecc30bdffc653
#TRUSTED_PROXIES=127.0.0.1,127.0.0.2
#TRUSTED_HOSTS=localhost,example.com

=========
Technical
=========

application domain (if empty, then it will be taken from Host header. If Host
→˓header is invalid, then fill this variable)
#APP_DOMAIN=

how long can take request if it is expected, that it will take long (eg. file
→˓upload) (continues on next page)

17

File Repository Documentation, Release 2

(continued from previous page)

please consider there if you have request buffering enabled in webserver, nginx has
→˓this by default
#LONG_EXECUTION_TIME=300
#TEMP_DIRECTORY=/tmp
#HTTP_TIMEOUT=30
#READ_ONLY=false

Health check, will expose an endpoint http://your-app/health?code=some-code-there
use it to connect your application into the monitoring. It will report storage,
→˓database health.
#HEALTH_CHECK_CODE=

==============
Token settings
==============

default expiration time for generated tokens
#TOKEN_EXPIRATION_TIME="+30 minutes"
used for tokens encryption (tokens can be generated by external applications)
#ENC_TOKEN_PHRASE=test123
Checksum generation salt (important for the security, needs to be not guessable)
#ENC_SALT=some-salt

==============================
Application connection details
==============================

SQLite3 example
#DATABASE_PATH=./var/data.db
#DATABASE_DRIVER=pdo_sqlite

MySQL example
#DATABASE_HOST=db_mysql
#DATABASE_USER=riotkit
#DATABASE_PASSWORD=riotkit
#DATABASE_NAME=file_repository
#DATABASE_VERSION=5.7
#DATABASE_DRIVER=pdo_mysql
#DATABASE_PORT=3306

PostgreSQL example
#DATABASE_USER=riotkit
#DATABASE_PASSWORD=riotkit
#DATABASE_NAME=file_repository
#DATABASE_DRIVER=pdo_pgsql
#DATABASE_HOST=/var/run/postgresql
#DATABASE_HOST=192.168.1.161
#DATABASE_PORT=5432

===============
Backups feature
===============

#BACKUP_ONE_VERSION_MAX_SIZE=4GB
(continues on next page)

18 Chapter 6. Configuration reference

File Repository Documentation, Release 2

(continued from previous page)

#BACKUP_COLLECTION_MAX_SIZE=15GB
#BACKUP_MAX_VERSIONS=5

#
→˓==
Anti-Hotlink protection
(NOTICE: Requires application to be restarted or ./bin/console cache:clear to be
→˓executed)
#
→˓==

#ANTI_HOTLINK_PROTECTION_ENABLED=true
#ANTI_HOTLINK_RESTRICT_REGULAR_URLS=false
#ANTI_HOTLINK_URL=/stream/{accessToken}/{expirationTime}/{fileId}
#ANTI_HOTLINK_CRYPTO=md5
#ANTI_HOTLINK_SECRET_METHOD="\$http_x_expiration_time\$filename\$http_remote_addr MY-
→˓AWESOME-SUFFIX"

=======
Storage
=======

#
Storage type
#
local: local filesystem
awss3: AWS S3, Minio.io or other compatible with AWS S3 interface
ftp: FTP/FTPS
#
#FS_ADAPTER=local

#
=== Local filesystem ===
#

path, where for local filesystem the files should be stored. %kernel.root_dir% is
→˓the application main directory
#FS_LOCAL_DIRECTORY="%kernel.root_dir%/../var/uploads"

(?) see: http://flysystem.thephpleague.com/docs/adapter/local/
#FS_LOCAL_LAZY=0

file locking; 1 - LOCK_SH, 2 - LOCK_EX, 3 - LOCK_UN, 4 - LOCK_NB
#FS_LOCAL_WRITEFLAGS=

how to handle symbolic links: 1 - skip links, 2 - disallow links
#FS_LOCAL_LINKHANDLING=

permissions chmod eg. 0755
#FS_LOCAL_PERMISSIONS=

#
=== S3 ===
#

set to enable S3 interface as adapter (supports Minio, and possibly Amazon AWS S3)
(continues on next page)

6.1. Application configuration 19

File Repository Documentation, Release 2

(continued from previous page)

#FS_ADAPTER=awss3v3
(advanced) Symfony service name of an S3 Client
#FS_AWSS3V3_CLIENT=s3_client
#FS_AWSS3V3_BUCKET=misc
#FS_AWSS3V3_PREFIX=
#FS_AWSS3V3_OPTIONS_ENDPOINT=http://localhost:9000
#FS_AWSS3V3_VERSION=latest
#FS_AWSS3V3_REGION=eu-central-1
#FS_AWSS3V3_KEY=some-key
#FS_AWSS3V3_SECRET=some-secret

#
=== FTP ===
#

there you can enable FTP adapter
#FS_ADAPTER=ftp

FTP host where to connect to, IP address or hostname
#FS_FTP_HOST=localhost

FTP port to connect to
#FS_FTP_PORT=21

FTP authorization: username
#FS_FTP_USERNAME=user

FTP authorization: user's password
#FS_FTP_PASSWORD=password

FTP directory where files will be stored in
#FS_FTP_ROOT=/

Use SSL? (FTPS instead of FTP)
#FS_FTP_SSL=1

Timeout
#FS_FTP_TIMEOUT=120

Permissions for owner eg. 0755
#FS_FTP_PERMPRIVATE=

Permissions for public (others) eg. 0400
#FS_FTP_PERMPUBLIC=

Passive mode?
#FS_FTP_PASSIVE=0

===========
SecureCopy
===========
#REPLICATION_MODE=primary

20 Chapter 6. Configuration reference

File Repository Documentation, Release 2

6.2 Permissions list

You can get a permissions list by accessing an endpoint in your application:

GET /auth/roles?_token=test-token-full-permissions

There is also an always up-to-date permissions list, taken directly from the current version of the application for which
the documentation you are browsing.

How to read the list by example:

/** Allows to upload images */
public const ROLE_UPLOAD_IMAGES = 'upload.images';

Legend:

• Between /** and */ is the description

• upload.images is the role name that you need to know

<?php declare(strict_types=1);

namespace App\Domain;

/**
* List of roles which could be required for a temporary token

*
* There are 2 types of roles:

* - GRANT

* - RESTRICTION

*
* They are distinguished because, we want to GRANT all rights to administrator for
→˓example, excluding RESTRICTION

* roles.

*
* @codeCoverageIgnore

*/
final class Roles
{

public const TEST_TOKEN = 'test-token-full-permissions';
public const INTERNAL_CONSOLE_TOKEN = 'internal-console-token';

//
//
// upload/creation
//
//

/** Allows to upload images */
public const ROLE_UPLOAD_IMAGES = 'upload.images';

/** Allows to upload video files */
public const ROLE_UPLOAD_VIDEOS = 'upload.videos';

/** Allows to upload documents */
public const ROLE_UPLOAD_DOCS = 'upload.documents';

/** Allows to submit backups */

(continues on next page)

6.2. Permissions list 21

File Repository Documentation, Release 2

(continued from previous page)

public const ROLE_UPLOAD_BACKUP = 'upload.backup';

/** Allows to upload ALL types of files regardless of mime type */
public const ROLE_UPLOAD = 'upload.all';

/** Enforce no password for all uploads for this token */
public const ROLE_UPLOAD_ENFORCE_NO_PASSWORD = 'upload.enforce_no_password';

/** Enforce token tags. In result every uploaded file will have tags specified in
→˓token regardless if they were sent in request */

public const ROLE_UPLOAD_ENFORCE_TOKEN_TAGS = 'upload.enforce_tags_selected_in_
→˓token';

public const ROLE_UPLOAD_ONLY_ONCE_SUCCESSFUL = 'upload.only_once_successful';

//
//
// authentication and tokens
//
//

/** User can check information about ANY token */
public const ROLE_LOOKUP_TOKENS = 'security.authentication_lookup';

/** User can browse/search for tokens */
public const ROLE_SEARCH_FOR_TOKENS = 'security.search_for_tokens';

/** User can overwrite files */
public const ROLE_ALLOW_OVERWRITE_FILES = 'security.overwrite';

/** User can generate tokens with ANY roles */
public const ROLE_GENERATE_TOKENS = 'security.generate_tokens';

/** User can use technical endpoints to manage the application */
public const ROLE_USE_TECHNICAL_ENDPOINTS = 'security.use_technical_endpoints

→˓';

/** User can expire other token, so it will be not valid anymore */
public const ROLE_REVOKE_TOKENS = 'security.revoke_tokens';

/** Special: Marking - tokens with this marking will not be able to be revoked by
→˓non-administrators */

public const ROLE_ADMINISTRATOR = 'security.administrator';

/** Allow to specify token id when creating a token */
public const ROLE_CREATE_PREDICTABLE_TOKEN_IDS = 'security.create_predictable_

→˓token_ids';

//
//
// deletion
//
//

/** Delete files that do not have a password, and password protected without a
→˓password */

public const ROLE_DELETE_ALL_FILES = 'deletion.all_files_including_
→˓protected_and_unprotected'; (continues on next page)

22 Chapter 6. Configuration reference

File Repository Documentation, Release 2

(continued from previous page)

//
//
// browsing
//
//

/** Allows to download ANY file, even if a file is password protected*/
public const ROLE_VIEW_ALL_PROTECTED_FILES = 'view.any_file';

/** List files from ANY tag that was requested, else the user can list only files
→˓by tags allowed in token */

public const ROLE_BROWSE_LIST_OF_FILES_BY_ANY_TAG = 'view.files_from_all_tags';

/** Define that the user can use the listing endpoint (basic usage) */
public const ROLE_ACCESS_LISTING_ENDPOINT = 'view.can_use_listing_endpoint_at_all

→˓';

//
//
// SecureCopy domain
//
//

/** Can use SecureCopy at all? */
public const ROLE_SECURE_COPY_READ_DATA_STREAM = 'securecopy.stream';

/** Read SecureCopy secrets: Encryption method, password, initialization vector.
→˓With following role can read secrets of any token in the system. */

public const ROLE_READ_SECURE_COPY_SECRETS = 'securecopy.all_secrets_read';

//
//
// collections
//
//

/** Allow person creating a new backup collection */
public const ROLE_COLLECTION_ADD = 'collections.create_new';

/** Allow to assign a specific id, when creating a collection */
public const ROLE_COLLECTION_CUSTOM_ID = 'collections.create_new.with_custom_id';

/** Allow creating backup collections that have no limits on size and length */
public const ROLE_COLLECTION_ADD_WITH_INFINITE_LIMITS = 'collections.allow_

→˓infinite_limits';

/** Edit collections where token is added as allowed */
public const ROLE_MODIFY_ALLOWED_COLLECTIONS = 'collections.modify_details_of_

→˓allowed_collections';

/** Allow to modify ALL collections. Collection don't have to allow such token
→˓which has this role */

public const ROLE_COLLECTION_MODIFY_ANY_COLLECTION = 'collections.modify_any_
→˓collection_regardless_if_token_was_allowed_by_collection';

/** Allow to browse any collection regardless of if the user token was allowed by
→˓it or not */ (continues on next page)

6.2. Permissions list 23

File Repository Documentation, Release 2

(continued from previous page)

public const ROLE_COLLECTION_VIEW_ANY_COLLECTION = 'collections.view_all_
→˓collections';

/** Can use an endpoint that will allow to browse and search collections? */
public const ROLE_CAN_USE_LISTING_COLLECTION_ENDPOINT = 'collections.can_use_

→˓listing_endpoint';

/** Manage tokens in the collections where our current token is already added as
→˓allowed */

public const ROLE_CAN_MANAGE_TOKENS_IN_ALLOWED_COLLECTIONS = 'collections.manage_
→˓tokens_in_allowed_collections';

/** Delete collections where token is added as allowed */
public const ROLE_CAN_DELETE_ALLOWED_COLLECTIONS = 'collections.delete_allowed_

→˓collections';

/** Upload to allowed collections */
public const ROLE_CAN_UPLOAD_TO_ALLOWED_COLLECTIONS = 'collections.upload_to_

→˓allowed_collections';

/** List versions for collections where the token was added as allowed */
public const ROLE_LIST_VERSIONS_FOR_ALLOWED_COLLECTIONS = 'collections.list_

→˓versions_for_allowed_collections';

/** Delete versions only from collections where the token was added as allowed */
public const ROLE_DELETE_VERSIONS_IN_ALLOWED_COLLECTIONS = 'collections.delete_

→˓versions_for_allowed_collections';

/** Collection manager: Create, edit, delete collections */
public const GROUP_COLLECTION_MANAGER = [

self::ROLE_COLLECTION_ADD,
self::ROLE_COLLECTION_ADD_WITH_INFINITE_LIMITS,
self::ROLE_COLLECTION_MODIFY_ANY_COLLECTION,
self::ROLE_COLLECTION_VIEW_ANY_COLLECTION,
self::ROLE_CAN_USE_LISTING_COLLECTION_ENDPOINT,
self::ROLE_CAN_MANAGE_TOKENS_IN_ALLOWED_COLLECTIONS,
self::ROLE_MODIFY_ALLOWED_COLLECTIONS,
self::ROLE_CAN_UPLOAD_TO_ALLOWED_COLLECTIONS,
self::ROLE_LIST_VERSIONS_FOR_ALLOWED_COLLECTIONS,
self::ROLE_DELETE_VERSIONS_IN_ALLOWED_COLLECTIONS

];

public const GRANTS_LIST = [
self::ROLE_UPLOAD_IMAGES,
self::ROLE_UPLOAD_DOCS,
self::ROLE_UPLOAD_BACKUP,
self::ROLE_UPLOAD,
self::ROLE_LOOKUP_TOKENS,
self::ROLE_SEARCH_FOR_TOKENS,
self::ROLE_ALLOW_OVERWRITE_FILES,
self::ROLE_GENERATE_TOKENS,
self::ROLE_USE_TECHNICAL_ENDPOINTS,
self::ROLE_DELETE_ALL_FILES,
self::ROLE_VIEW_ALL_PROTECTED_FILES,
self::ROLE_BROWSE_LIST_OF_FILES_BY_ANY_TAG,
self::ROLE_ACCESS_LISTING_ENDPOINT,
self::ROLE_REVOKE_TOKENS,

(continues on next page)

24 Chapter 6. Configuration reference

File Repository Documentation, Release 2

(continued from previous page)

self::ROLE_ADMINISTRATOR,

// collections
self::ROLE_COLLECTION_ADD,
self::ROLE_COLLECTION_CUSTOM_ID,
self::ROLE_COLLECTION_ADD_WITH_INFINITE_LIMITS,
self::ROLE_CAN_DELETE_ALLOWED_COLLECTIONS,
self::ROLE_COLLECTION_MODIFY_ANY_COLLECTION,
self::ROLE_MODIFY_ALLOWED_COLLECTIONS,
self::ROLE_COLLECTION_VIEW_ANY_COLLECTION,
self::ROLE_CAN_USE_LISTING_COLLECTION_ENDPOINT,
self::ROLE_CAN_MANAGE_TOKENS_IN_ALLOWED_COLLECTIONS,
self::ROLE_CAN_UPLOAD_TO_ALLOWED_COLLECTIONS,
self::ROLE_LIST_VERSIONS_FOR_ALLOWED_COLLECTIONS,
self::ROLE_DELETE_VERSIONS_IN_ALLOWED_COLLECTIONS,

// securecopy
self::ROLE_SECURE_COPY_READ_DATA_STREAM,
self::ROLE_READ_SECURE_COPY_SECRETS

];

public const RESTRICTIONS_LIST = [
self::ROLE_UPLOAD_ENFORCE_NO_PASSWORD,
self::ROLE_UPLOAD_ENFORCE_TOKEN_TAGS,
self::ROLE_UPLOAD_ONLY_ONCE_SUCCESSFUL

];

public static function getRolesList(): array
{

return \array_merge(self::GRANTS_LIST, self::RESTRICTIONS_LIST);
}

/**
* The test token is available only in APP_ENV=test

*
* @param string|null $tokenId

* @return bool

*/
public static function isTestToken(?string $tokenId): bool
{

return $tokenId === static::TEST_TOKEN;
}

/**
* Internal token is used only in CLI commands

* Cannot be used within any remote access (eg. via HTTP)

*
* @param string|null $tokenId

* @return bool

*/
public static function isInternalApplicationToken(?string $tokenId): bool
{

return $tokenId === static::INTERNAL_CONSOLE_TOKEN;
}

}

6.2. Permissions list 25

File Repository Documentation, Release 2

6.3 Docker container extra parameters

Parameters passed to docker container are mostly application configuration parameters, but not only. There exists extra
parameters that are implemented by the docker container itself, they are listed below:

Name and example Description
SENTRY_DSN=url-here (optional) Enables integration with sentry.io, so all failures will be logged

there
SECU-
RITY_ADMIN_TOKEN=. . .

(optional) Create admin auth token of given UUIDv4 on container startup

6.4 PostgreSQL support

1. Required extensions to enable in PostgreSQL:

• uuid-ossp (CREATE EXTENSION “uuid-ossp”;)

2. Configuration example:

UNIX Socket example:

DATABASE_URL: ""
DATABASE_HOST: "/var/run/postgresql"
DATABASE_NAME: "rojava"
DATABASE_PASSWORD: "rojava"
DATABASE_USER: "riotkit"
DATABASE_DRIVER=pdo_pgsql

DATABASE_CHARSET=UTF8
DATABASE_COLLATE=pl_PL.UTF8
DATABASE_VERSION=10.10

IPv4 example:

DATABASE_URL: ""
DATABASE_HOST: "192.168.2.161"
DATABASE_NAME: "rojava"
DATABASE_PASSWORD: "rojava"
DATABASE_USER: "riotkit"
DATABASE_DRIVER=pdo_pgsql

DATABASE_CHARSET=UTF8
DATABASE_COLLATE=pl_PL.UTF8
DATABASE_VERSION=10.10

3. “SQLSTATE[21000]: Cardinality violation: 7 ERROR: more than one row returned by a subquery used
as an expression”

This is an unresolved issue in the Doctrine DBAL driver that we use. To work around it, please create a separate
database, user and use default schema “public” for the application.

26 Chapter 6. Configuration reference

https://github.com/doctrine/dbal/issues/950

CHAPTER 7

Docker, releases and versioning

Images are hosted quay.io

The versions are created from tags, when a code is considered stable, then it is tagged and released as stable. There are
also ALPHA and RC (release candidate) versions tagged for testing purposes, often close to the stable release date.

Please see https://semver.org/ for how we version the application.

quay.io/riotkit/file-repository:version
quay.io/riotkit/bahub:version
quay.io/riotkit/kropot-cli

27

https://semver.org/

File Repository Documentation, Release 2

28 Chapter 7. Docker, releases and versioning

CHAPTER 8

Using postman to manage the application

Postman is an API client that allowing to send HTTP requests. You can use it, when you do not have any other
graphical application, that could be acting as a client of the File Repository.

29

File Repository Documentation, Release 2

30 Chapter 8. Using postman to manage the application

File Repository Documentation, Release 2

31

File Repository Documentation, Release 2

32 Chapter 8. Using postman to manage the application

CHAPTER 9

Authorization

File Repository is an API application, so there is no user account identified by login and password, there are ACCESS
TOKENS.

An access token is identified by long UUIDv4, and has assigned information about the access, such as:

• List of actions that are allowed (eg. file uploads could be allowed, but browsing the list of files not)

• Allowed tags that could be used when uploading (optional)

• Allowed file types (mime types) when uploading (optional)

• List of allowed IP addresses that could use this token (optional)

• List of allowed User-Agent strings (optional)

• Maximum allowed file size (optional)

• Token expiration date

To authorize in the API you need to provide the token in one of those methods: - Using a query parameter
“_token” eg. /some/url?_token=123 - Using a HTTP header “X-Auth-Token” - Using an environment variable
“FILE_REPOSITORY_TOKEN”

9.1 Creating a token

Check out the Permissions list for a complete list of permissions.

33

File Repository Documentation, Release 2

Parameters
name description
roles A list of roles allowed for user. See permissions/configuration reference page
data.tags List of allowed tags to use in upload endpoints (OPTIONAL)
data.allowedMimeTypesList of allowed mime types (OPTIONAL)
data.maxAllowedFileSizeNumber of bytes of maximum file size (OPTIONAL)
data.allowedUserAgentsList of allowed User-Agent header values (ex. to restrict token to single browser) (OP-

TIONAL)
data.allowedIpAddressesList of allowed IP addresses (ex. to restrict one-time-token to single person/session) (OP-

TIONAL)
data.secureCopyEncryptionMethodEncryption method in SecureCopy mechanism (if using) (OPTIONAL)
data.secureCopyEncryptionKeyEncryption key in SecureCopy component. If active, then client using this token will be

downloading encrypted files (zero-knowledge) (OPTIONAL)
expires Expiration date, or “auto”, “automatic”, “never”. Empty value means same as “auto”
id Custom UUIDv4 (requires: security.create_predictable_token_ids role or to be an admin)

POST /auth/token/generate?_token=your-admin-token-there

{
"roles": ["collections.create_new", "collections.manage_tokens_in_allowed_

→˓collections"],
"data": {

"tags": [],
"allowedMimeTypes": ["image/jpeg", "image/png", "image/gif"],
"maxAllowedFileSize": 14579,
"allowedUserAgents": ["Mozilla/5.0 (X11; Linux x86_64; rv:57.0) Gecko/

→˓20100101 Firefox/57.0"],
"allowedIpAddresses": ["192.168.1.10"]

},
"expires": "2020-05-05 08:00:00"

}

Example response:

{
"status": true,
"error_code": null,
"http_code": 200,
"errors": [],
"context": [],
"message": "Token created",
"token": {

"id": "ca6a2635-d2cb-4682-ba81-3879dd0e8a77",
"active": true,
"expires": "2020-05-05 08:00:00",
"expired": false,
"data": {

"tags": [],
"allowedMimeTypes": ["image/jpeg", "image/png", "image/gif"],
"maxAllowedFileSize": 14579,
"allowedIpAddresses": ["192.168.1.10"],
"allowedUserAgents": ["Mozilla/5.0 (X11; Linux x86_64; rv:57.0) Gecko/

→˓20100101 Firefox/57.0"],
"secureCopyEncryptionKey": "",
"secureCopyEncryptionMethod": ""

(continues on next page)

34 Chapter 9. Authorization

File Repository Documentation, Release 2

(continued from previous page)

},
"roles": [

"collections.create_new",
"collections.add_tokens_to_allowed_collections"

]
}

}

Required roles:

• security.generate_tokens

9.2 Searching tokens

Finds tokens matching search criteria.

GET /auth/search?_token=your-token-there&q=&limit=50&page=1

Example response:

{
"status": true,
"error_code": null,
"http_code": 200,
"errors": [],
"context": {

"pagination": {
"page": 1,
"perPageLimit": 5,
"maxPages": 7

}
},
"message": "Matches found",
"data": [

{
"id": "1c2c84f2-d488-4ea0-9c88-d25aab139ac4",
"active": true,
"data": {

"tags": [],
"allowedMimeTypes": [],
"maxAllowedFileSize": null,
"allowedIpAddresses": [],
"allowedUserAgents": [],
"secureCopyEncryptionKey": "",
"secureCopyEncryptionMethod": ""

},
"roles": [

"upload.images"
]

},
{

"id": "669d4918-b156-412d-9c89-ba01d6eef9d4",
"active": true,
"data": {

"tags": [],

(continues on next page)

9.2. Searching tokens 35

File Repository Documentation, Release 2

(continued from previous page)

"allowedMimeTypes": [],
"maxAllowedFileSize": null,
"allowedIpAddresses": [],
"allowedUserAgents": [],
"secureCopyEncryptionKey": "",
"secureCopyEncryptionMethod": ""

},
"roles": [

"security.generate_tokens"
]

},
{

"id": "fad05629-51f6-4ddf-b21a-315a1451670d",
"active": true,
"data": {

"tags": [],
"allowedMimeTypes": [],
"maxAllowedFileSize": null,
"allowedIpAddresses": [],
"allowedUserAgents": [],
"secureCopyEncryptionKey": "",
"secureCopyEncryptionMethod": ""

},
"roles": [

"upload.images"
]

},
{

"id": "3235ad82-666f-4963-a751-b4dff3168c4c",
"active": true,
"expires": "2020-05-05 08:00:00",
"expired": false,
"data": {

"tags": [
"user_uploads.u123",
"user_uploads"

],
"allowedMimeTypes": [

"image\/jpeg",
"image\/png",
"image\/gif"

],
"maxAllowedFileSize": 100,
"allowedIpAddresses": [],
"allowedUserAgents": [],
"secureCopyEncryptionKey": "",
"secureCopyEncryptionMethod": ""

},
"roles": [

"upload.images"
]

},
{

"id": "dafe83fa-7813-4d84-a625-16c6657fec9f",
"active": true,
"data": {

"tags": [],
(continues on next page)

36 Chapter 9. Authorization

File Repository Documentation, Release 2

(continued from previous page)

"allowedMimeTypes": [],
"maxAllowedFileSize": null,
"allowedIpAddresses": [],
"allowedUserAgents": [],
"secureCopyEncryptionKey": "",
"secureCopyEncryptionMethod": ""

},
"roles": [

"collections.create_new",
"collections.manage_tokens_in_allowed_collections"

]
}

]
}

Required roles:

• security.search_for_tokens

• security.authentication_lookup

9.3 Looking up a token

GET /auth/token/D0D12FFF-DD04-4514-8E5D-D51542DEBCFA?_token=your-admin-token-there

Example response:

{
"status": true,
"error_code": null,
"http_code": 200,
"errors": [],
"context": [],
"message": "Token found",
"token": {

"id": "ca6a2635-d2cb-4682-ba81-3879dd0e8a77",
"active": true,
"data": {

"tags": [],
"allowedMimeTypes": [],
"maxAllowedFileSize": 0,
"allowedIpAddresses": [],
"allowedUserAgents": [],
"secureCopyEncryptionKey": "",
"secureCopyEncryptionMethod": ""

},
"roles": [

"security.administrator",
"upload.images",
"upload.documents",
"upload.backup",
"upload.all",
"security.authentication_lookup",
"security.search_for_tokens",
"security.overwrite",

(continues on next page)

9.3. Looking up a token 37

File Repository Documentation, Release 2

(continued from previous page)

"security.generate_tokens",
"security.use_technical_endpoints",
"deletion.all_files_including_protected_and_unprotected",
"view.any_file",
"view.files_from_all_tags",
"view.can_use_listing_endpoint_at_all",
"security.revoke_tokens",
"collections.create_new",
"collections.create_new.with_custom_id",
"collections.allow_infinite_limits",
"collections.delete_allowed_collections",
"collections.modify_any_collection_regardless_if_token_was_allowed_by_

→˓collection",
"collections.modify_details_of_allowed_collections",
"collections.view_all_collections",
"collections.can_use_listing_endpoint",
"collections.manage_tokens_in_allowed_collections",
"collections.upload_to_allowed_collections",
"collections.list_versions_for_allowed_collections",
"collections.delete_versions_for_allowed_collections",
"securecopy.stream",
"securecopy.all_secrets_read"

]
}

}

Required roles:

• security.authentication_lookup

9.4 Revoking a token

DELETE /auth/token/D0D12FFF-DD04-4514-8E5D-D51542DEBCFA?_token=your-admin-token-there

Example response:

{
"status": true,
"error_code": null,
"http_code": 201,
"errors": [],
"context": [],
"message": "Token was deleted",
"token": {

"id": null,
"active": true,
"expires": "2020-05-05 08:00:00",
"expired": false,
"data": {

"tags": [],
"allowedMimeTypes": [],
"maxAllowedFileSize": 0,
"allowedIpAddresses": [],
"allowedUserAgents": [],

(continues on next page)

38 Chapter 9. Authorization

File Repository Documentation, Release 2

(continued from previous page)

"secureCopyEncryptionKey": "",
"secureCopyEncryptionMethod": ""

},
"roles": [

"security.administrator",
"upload.images",
"upload.documents",
"upload.backup",
"upload.all",
"security.authentication_lookup",
"security.search_for_tokens",
"security.overwrite",
"security.generate_tokens",
"security.use_technical_endpoints",
"deletion.all_files_including_protected_and_unprotected",
"view.any_file",
"view.files_from_all_tags",
"view.can_use_listing_endpoint_at_all",
"security.revoke_tokens",
"collections.create_new",
"collections.create_new.with_custom_id",
"collections.allow_infinite_limits",
"collections.delete_allowed_collections",
"collections.modify_any_collection_regardless_if_token_was_allowed_by_

→˓collection",
"collections.modify_details_of_allowed_collections",
"collections.view_all_collections",
"collections.can_use_listing_endpoint",
"collections.manage_tokens_in_allowed_collections",
"collections.upload_to_allowed_collections",
"collections.list_versions_for_allowed_collections",
"collections.delete_versions_for_allowed_collections",
"securecopy.stream",
"securecopy.all_secrets_read"

]
}

}

Required roles:

• security.revoke_tokens

9.5 Managing authentication using console commands

Tokens can be easily generated without touching the cURL or browser or any API client. Just use the console.

9.5.1 Generating an unlimited administrative token

Probably first time when you set up the File Repository you may want to create a token, that will allow you to fully
manage everything. We already knew about such case and we’re prepared for it! ;-)

./bin/console auth:generate-admin-token
Generating admin token...

(continues on next page)

9.5. Managing authentication using console commands 39

File Repository Documentation, Release 2

(continued from previous page)

========================
Form:
[Role] -> security.administrator

Response:
========================
{

"tokenId": "1B3B15EC-18E9-45DD-846B-42C5006E872A",
"expires": "2029-02-11 07:24:42"

}

In this case “1B3B15EC-18E9-45DD-846B-42C5006E872A” is your administrative token, pssst. . . keep it safe!

Note: You can also generate a token with custom tokenId using the –id switch

Note: Use –ignore-error-if-token-exists in scripts

9.5.2 Generating a normal token

It is considered a very good practice to minimize access to the resources. For example the server which will be storing
backups on the File Repository should only be allowed to send backups, not deleting for example.

For such cases you can generate a token that will allow access to specified collections and limit actions on them.

./bin/console auth:create-token --help
Description:

Creates an authentication token

Usage:
auth:create-token [options]

Options:
--roles=ROLES
--tags=TAGS
--mimes=MIMES
--max-file-size=MAX-FILE-SIZE

-i, --id[=ID]
--expires=EXPIRES Example: 2020-05-01 or +10 years
--ignore-error-if-token-exists Exit with success if token already exists. Does

→˓not check strictly permissions and other attributes, just the id.
-h, --help Display this help message
-q, --quiet Do not output any message
-V, --version Display this application version

--ansi Force ANSI output
--no-ansi Disable ANSI output

-n, --no-interaction Do not ask any interactive question
-e, --env=ENV The Environment name. [default: "test"]

--no-debug Switches off debug mode.
-v|vv|vvv, --verbose Increase the verbosity of messages: 1 for

→˓normal output, 2 for more verbose output and 3 for debug

Help:
Allows to generate a token you can use later to authenticate in application for a

→˓specific thing

Example of generating a token with specified roles:

40 Chapter 9. Authorization

File Repository Documentation, Release 2

./bin/console auth:create-token --roles upload.images,upload.enforce_no_password --
→˓expires="+30 minutes" --id="A757A8CB-964F-4F7B-BB70-9DB2CF524BBA"
Form:
[Role] -> upload.images
[Role] -> upload.enforce_no_password

Response:
========================
{

"status": true,
"error_code": null,
"http_code": 201,
"errors": [],
"context": [],
"message": "Token created",
"token": {

"id": "A757A8CB-964F-4F7B-BB70-9DB2CF524BBA",
"active": true,
"expired": false,
"expires": {

"date": "2020-02-22 11:19:57.604976",
"timezone_type": 3,
"timezone": "UTC"

},
"data": {

"tags": [],
"allowedMimeTypes": [],
"maxAllowedFileSize": 0,
"allowedIpAddresses": [],
"allowedUserAgents": [],
"secureCopyEncryptionKey": "",
"secureCopyEncryptionMethod": ""

},
"roles": [

"upload.images",
"upload.enforce_no_password"

]
}

}

Note: When you not specify the –id, then the id will be generated automatically

Note: Use –ignore-error-if-token-exists in scripts

9.5.3 Deleting expired tokens

Delete expired tokens to clean up the database out of bloat. This should be a scheduled periodic job in a cronjob.

./bin/console auth:clear-expired-tokens
[2019-02-05 08:07:01] Removing token 276CCE10-00C5-4CB6-9F9A-87934101BACE

9.6 Token load hierarchy

Authorization can be provided in multiple ways, including query string, headers and environment variables. To build
a perfect setup it is necessary to know, how the File Repository is fetching the token value, which source is in priority.

9.6. Token load hierarchy 41

File Repository Documentation, Release 2

9.6.1 Loading priority

It’s a top list, first match wins.

1. _token in query string eg. ?_token=xyz is used

2. token header

3. x-auth-token header

4. FILE_REPOSITORY_TOKEN environment variable

9.6.2 Use cases: Static assets serving

Best practice is to have each file, each collection secured with a token. You can generate a viewer token, and set it as
an environment variable on given endpoints, or on whole application.

Using NGINX, Apache 2 or other webserver you can deny access to some routes, on other routes set a default access
token - by enforcing a header or environment variable. The webserver proxies also gives a possibility to strip out
request data, for example the headers and query string parts.

42 Chapter 9. Authorization

CHAPTER 10

Files storage

The file storage is like a bag of files, there are no directories, it’s more like an object storage. When you put some file
it is written down on the disk, and it’s metadata is stored in the database.

Files could be tagged with some names, it’s useful if the repository is shared between multiple usage types. The listing
endpoint can search by tag, phrase, mime type - the external application could use listing endpoint to show a gallery
of pictures for example, uploaded documents, attachments lists.

In short words the File Storage is a specialized group of functionality that allows to manage files, group them, upload
new, delete and list them.

10.1 Security

10.1.1 Access

File can be PUBLIC or PRIVATE, the public attribute of input data that is sent together with file means the file will
not be listed by listing endpoint (unless the token is not an administrative token).

Password protection could be used to protect from downloading the file content by not authorized person, and also it
will anonymize the file in public listing if the person who lists the files will not know the password.

10.1.2 Uploading restrictions

When you give user a temporary token to allow to upload eg. avatar, then you may require that the file will not have a
password, and possibly enforce to select some tags as mandatory.

Extra roles, that can restrict the token
name description
upload.enforce_no_password Enforce files uploaded with this token to not have a password
up-
load.enforce_tags_selected_in_token

Regardless of tags that user could choose, the tags from token will be copied
into each uploaded file

43

File Repository Documentation, Release 2

10.2 Uploading

Files could be uploaded in three ways - as RAW BODY, as POST form field and as URL from existing resource in the
internet.

Common parameters for all endpoints
name description
tags List of tags where the file will be listed
public Should be listed/searched? (true/false)
password Optionally allows to protect access to the file and it’s metadata
encoding Allows to upload encoded file, example values: base64, ‘’ (helpful for frontend implemen-

tation)

10.2.1 From external resource by URL

Endpoint specific parameters
name description
fileUrl URL address to the file from the internet

POST /repository/image/add-by-url?_token=some-token-there

{
"fileUrl": "http://zsp.net.pl/files/barroness_logo.png",
"tags": [],
"public": true

}

10.2.2 In RAW BODY

Endpoint specific parameters
name description
filename Filename that will be used to access the file later

POST /repository/file/upload?_token=some-token-here&fileName=heart.png

< some file content there instead of this text >

Notes:

• Filename will have added automatically the content hash code to make the record associated with file content
(eg. heart.png -> 5Dgds3dqheart.png)

• Filename is unique, same as file

• If file already exists under other name, then it’s name will be returned (deduplication mechanism)

44 Chapter 10. Files storage

File Repository Documentation, Release 2

10.2.3 In a POST form field

Endpoint specific parameters
name description
filename Filename that will be used to access the file later

POST /repository/file/upload?_token=some-token-here&fileName=heart.png

Content-Type: multipart/form-data; boundary=----WebKitFormBoundary7MA4YWxkTrZu0gW

------WebKitFormBoundary7MA4YWxkTrZu0gW
Content-Disposition: form-data; name="file"; filename=""
Content-Type: image/png

------WebKitFormBoundary7MA4YWxkTrZu0gW--

... file content some where ...

10.3 Downloading

When you upload your file you will always get an URL address in the JSON response, but the download endpoints
has more to offer than it looks on first view. Let’s explain additional things you can do with the download endpoint.

Features:

• Bytes range support, files could be downloaded partially, videos can be rewinded while streamed

• Big files support

• Content type is sent, so the browser knows the file size and can show the progress bar

• Optional password protection

Common parameters for all endpoints
name description
password Password to access the file, optionally if the file is password protected

10.3.1 Regular downloading

It’s very simple.

GET /repository/file/d3beb8a9f0some-file-name-there.txt?password=optional-password-
→˓there-if-any

10.3.2 Downloading using alias defined in ids_mapping.yaml

Aliases are allowing to access files by other names, they can be defined in ./config/ids_mapping.yaml file. It’s very
helpful feature when you migrate from other storage application to File Repository.

Example ids_mapping.yaml file:

10.3. Downloading 45

File Repository Documentation, Release 2

"oh-my-alias-there": "d3beb8a9f0some-file-name-there.txt"

Example request:

GET /repository/file/oh-my-alias-there

10.3.3 Downloading using hotlink protection

Hotlink protection is allowing to generate personalized download urls by combining eg. user’s IP address, some salt,
file name and timestamp. Such link cannot be shared with other users.

Note: Hotlink protection endpoint also supports aliasing.

Example request:

GET /stream/531ce1f1d5d242cd5005b3758d3b5435/2219788800/d3beb8a9f0some-file-name-
→˓there.txt

The format of the URL is defined in the environment variables:

ANTI_HOTLINK_PROTECTION_ENABLED=true
ANTI_HOTLINK_RESTRICT_REGULAR_URLS=false
ANTI_HOTLINK_URL=/stream/{accessToken}/{expirationTime}/{fileId}
ANTI_HOTLINK_CRYPTO=md5
ANTI_HOTLINK_SECRET_METHOD="\$http_x_expiration_time\$http_test_header MY-AWESOME-
→˓SUFFIX"

It means you can change it, so the URL will be different. {expirationTime} is optional, but very helpful.

Short explanation:

The {accessToken} is generated by hashing with eg. md5 the filled-up
ANTI_HOTLINK_SECRET_METHOD.

Example: Given ANTI_HOTLINK_SECRET_METHOD is “$http_x_expiration_time$http_test_header
MY-AWESOME-SUFFIX” We send a request with {expirationTime} = 123 and a header Test-Header =
HELLO

So, the secret would be “123HELLO MY-AWESOME-SUFFIX”, now we have to hash using selected
crypto - md5. md5(23HELLO MY-AWESOME-SUFFIX) = 531ce1f1d5d242cd5005b3758d3b5435

It means that we have URL: /stream/531ce1f1d5d242cd5005b3758d3b5435/123/d3beb8a9f0some-file-
name-there.txt

10.4 Aliasing filenames (migrating existing files to File Repository)

Filename in File Repository is created based on file contents hash + name submitted by user. To allow easier migra-
tion of your existing files, the File Repository allows to create aliases to files you upload.

10.4.1 Scenario

Let’s assume that you have a file named “Accidential-Anarchist.mp4”, and your website shows a player that points to
https://static.iwa-ait.org/Accidential-Anarchist.mp4 Now you want to migrate your storage to use File Repository, so
the File Repository will store and serve the files with help of your webserver.

46 Chapter 10. Files storage

https://static.iwa-ait.org/Accidential-Anarchist.mp4

File Repository Documentation, Release 2

To keep old links still working you need to:

• Set up a URL rewrite in your webserver (eg. NGINX or Apache 2) to rewrite the FORMAT OF THE URL,
example: /education/movies/watch?v=. . . to /repository/file/. . .

• You have a file “Accidential-Anarchist.mp4”, after uploading to File Repository it will have different name
eg. “59dce00bcAccidential-Anarchist.mp4”, you can create an alias that will point from “Accidential-
Anarchist.mp4” to “59dce00bcAccidential-Anarchist.mp4”

10.4.2 Practice, defining aliases

To start you need to create a file config/ids_mapping.yaml, where you will list all of the aliases in YAML syntax.

Example:

#
File name mapping for file downloading

Purpose: Allows to create single or multiple aliases for a file name
Example usage: When you migrate from other file storage application to the File
→˓Repository
then you probably have files with names without eg. hash
After you import all files to the File Repository and rewrite urls
→˓on eg. NGINX
still the identifiers are different. File Repository uses hash +
→˓filename and other storage
may use other naming convention.
#
#
To enable this file simply rename it removing the ".example" from the filename.
#

some_name: 3fcfca2d27d1681e2b72b07709174ec8a8bb618666b5d4c4a18618f974350deb_image.jpg
"example-alias": "c7beb8a9f0mapped.txt"
Accidential-Anarchist.mp4: "59dce00bcAccidential-Anarchist.mp4"

Notice: You need to restart the application (or execute ./bin/console cache:clear –env=prod) after applying changes
to this file

10.5 Hotlink protection - personalizing URLs for your visitors

If for any reason you need to secure your content from being distributed outside of your website, then you need a
hotlink protection. Hotlink protection gives your website a control over who can see the video, image or any other
resource that is kept on File Repository.

10.5.1 Preparing your website and File Repository configuration

A website that is displaying eg. a video player that would play a video from File Repository need to point to a
personalized URL address especially generated for your page visitor.

At first let’s look at the URL format, you need to define a URL format that will point to protected files. Below there
are multiple examples, you can configure the URL however you want, this you need to adjust in your .env file or in
environment variables in Docker container.

10.5. Hotlink protection - personalizing URLs for your visitors 47

File Repository Documentation, Release 2

example 1
ANTI_HOTLINK_URL=/stream/{accessToken}/{expirationTime}/{fileId}

example 2
ANTI_HOTLINK_URL=/video/{accessToken}/{expirationTime}/{fileId}

example 3
ANTI_HOTLINK_URL=/watch/{fileId},{accessToken},{expirationTime}

example 4
ANTI_HOTLINK_URL=/watch/{accessToken}/{fileId}

So, let’s take a look at the most interesting part - the access token generation.

Each visitor on your page needs to get a unique access token that will allow to see the file content only for him/her.
To generate such access token we need to DEFINE A COMMON FORMAT that your application will use and
File Repository will understand.

ANTI_HOTLINK_SECRET_METHOD="\$http_x_expiration_time\$http_x_real_uri\$http_x_remote_
→˓addr MY-AWESOME-SUFFIX"

Following example is combining most important variables, why?

• $http_x_real_uri - to restrict this token only to single file (this header may be required to be set on NG-
INX/Apache level)

• $http_x_remote_addr - to restrict access to single IP address

• MY-AWESOME-SUFFIX - this one definitely you should change to a SECRET you only know. It will prevent
anybody from generating a token

• $http_x_expiration_time - optionally validate the passed input data in the url

Generally the rule with the variables is simple as in NGINX, but a little bit more extended to give better possibilities.

Variable templates
name description
$http_xxx In place of xxx put your normalized header name eg. Content-Type would be content_type
$server_xxx Everything what is in PHP’s $_SERVER, including environment variables
$query_xxx Everything what is in query string (query string in URL is everything after question mark)

10.5.2 Practical example of generating access token on your website

Assuming that you have following configuration:

ANTI_HOTLINK_PROTECTION_ENABLED=true
ANTI_HOTLINK_RESTRICT_REGULAR_URLS=false
ANTI_HOTLINK_CRYPTO=md5
ANTI_HOTLINK_SECRET_METHOD="\$http_x_expiration_time\$filename\$http_remote_addr MY-
→˓AWESOME-SUFFIX"
ANTI_HOTLINK_URL=/stream/{accessToken}/{expirationTime}/{fileId}

That would be an example code that could generate URL addresses in your application:

<?php
$fileId = 'Accidential-Anarchist.mp4';

(continues on next page)

48 Chapter 10. Files storage

File Repository Documentation, Release 2

(continued from previous page)

$expirationTime = time() + (3600 * 4); // +4 hours
$rawToken = $expirationTime . $fileId . ($_SERVER['REMOTE_ADDR'] ?? '') . ' MY-
→˓AWESOME-SUFFIX';

$hash = hash('md5', $rawToken);
echo 'URL: /stream/' . $hash . '/' . $expirationTime . '/' . $fileId;

10.6 Listing and searching

Each file can be found by using a search endpoint. Password protected files are censored, if the correct password was
not entered in the search field.

Note: Files can be named and tagged, marked as public/private, password protected.

Parameters
name description
page Page number
limit Limit results on single page
password Password for password-protected files
searchQuery Search phrase, a word, multiple words to be searched for in the file name
tags List of tags to filter by (array)
mimes List of mimes to filter by (array)

Example request:

GET /repository?_token=your-auth-token&page=1&limit=20

10.6. Listing and searching 49

File Repository Documentation, Release 2

50 Chapter 10. Files storage

CHAPTER 11

Backup

Backup collections allows to store multiple versions of the same file.

Each submitted version has automatically incremented version number by one.

Example scenario with strategy “delete_oldest_when_adding_new”:

Given we have DATABASE dumps of iwa-ait.org website
And our backup collection can contain only 3 versions (maximum)

When we upload a sql dump file THEN IT'S a v1 version
When we upload a next sql dump file THEN IT'S a v2 version
When we upload a next sql dump file THEN IT'S a v3 version

Then we have v1, v2, v3

When we upload a sql dump file THEN IT'S a v4 version
But v1 gets deleted because collection is full

Then we have v2, v3, v4

From security point of view there is a possibility to attach multiple tokens with different access rights to view and/or
manage the collection.

11.1 Getting started

The workflow is following:

1. You need to have an access token that allows you to create collections

2. Create a collection, remember it’s ID (we will call it collection_id later)

3. (Optional) Allow some other token or tokens to access the collection (all actions or only some selected actions
on the collection)

4. Store backups under a collection of given collection_id

51

File Repository Documentation, Release 2

5. List and download stored backups when you need

11.1.1 Versioning

Each uploaded version is added as last and have a version number incremented by one, and a ID string generated.

For example: There is a v1 version, we upload a new version and a new version is getting a number v2

Later any version could be accessed by generated ID string or version number (in combination with the collection
ID)

11.1.2 Collection limits

Each collection could either be a infinite collection or a finite collection.

Below are listed limits for finite collections:

Limits
limit description
maxBackupsCount Maximum count of versions that could be stored
maxOneVersionSize Maximum disk space that could be allocated for single version
maxCollectionSize Maximum disk space for whole collection (summary of all files)

11.1.3 Permissions

There could be multiple tokens with different permissions assigned to the collection.

Example use case: Generated “Guest token” with download-only permissions could be safe to share between ad-
ministrators. The “Upload token” could be used by the server to automatically upload new versions without
permissions to delete other versions and without need to modify collections limits. “Management token” with
all of the permissions for managing a collection.

11.2 Managing collections

To start creating backups you need a collection that will handle ONE FILE. The file may be a zipped directory, a text
file, SQL dump or anything you need.

11.2.1 Collection creation

To add any backup you need a collection at first. Collection is a container that keeps multiple versions of same file
(for example your database dump from each day). Collection additionally can define limits on length, size, type of
uploaded file, and tokens which have access to it at all.

Example request:

POST {{appUrl}}/repository/collection?_token=test-token-full-permissions

{
"maxBackupsCount": 5,
"maxOneVersionSize": 0,

(continues on next page)

52 Chapter 11. Backup

File Repository Documentation, Release 2

(continued from previous page)

"maxCollectionSize": "250MB",
"strategy": "delete_oldest_when_adding_new",
"description": "iwa-ait.org database backup",
"filename": "iwa-ait-org.sql.gz"

}

In the response you will receive a collection ID that will be required for editing collection information, assigning
tokens and uploading files.

There are two strategies. delete_oldest_when_adding_new is automatically deleting older backup versions when a
maxBackupsCount is reached and a new backup is submitted. alert_when_backup_limit_reached will raise an
error when submitting a new version to already full backup collection.

Notes:

• Put zero values to disable the limit

• Supports “simulate=true” parameter that allows to send a request that will not create any data, but only validate
submitted data

• You’r token will be automatically added as token allowed to access and modify the collection

Required permissions:

• collections.create_new

Optional permissions:

• collections.allow_infinite_limits (allows to create an infinite collection, it means that you can eg. upload as
much files as you like to, and/or the disk space is unlimited)

11.2.2 Collection editing

PUT {{appUrl}}/repository/collection?_token=test-token-full-permissions

{
"collection": "SOME-COLLECTION-ID-YOU-RECEIVED-WHEN-CREATING-THE-COLLECTION",
"maxBackupsCount": 5,
"maxOneVersionSize": 0,
"maxCollectionSize": "250MB",
"strategy": "delete_oldest_when_adding_new",
"description": "iwa-ait.org database backup (modified)",
"filename": "iwa-ait-org.sql.gz"

}

Notes:

• The collection size cannot be lower than it is actual in the storage (sum of existing files in the collection)

• You need to have global permissions for managing any collection or to have token listed as allowed in collec-
tion you want to edit

Required permissions:

• collections.modify_details_of_allowed_collections

Optional permissions:

• collections.allow_infinite_limits (allows to edit an infinite collection, it means that you can eg. upload as much
files as you like to, and/or the disk space is unlimited)

11.2. Managing collections 53

File Repository Documentation, Release 2

• collections.modify_any_collection_regardless_if_token_was_allowed_by_collection (gives a possibility to edit
a collection even if token is not attached to it)

11.2.3 Deleting

To delete a collection you need to at first make sure, that there are no backup versions attached to it. Before deleting a
collection you need to manually delete all backups. It’s for safety reasons.

DELETE {{appUrl}}/repository/collection/SOME-COLLECTION-ID?_token=test-token-full-
→˓permissions

Required permissions:

• collections.delete_allowed_collections

Optional permissions:

• collections.modify_any_collection_regardless_if_token_was_allowed_by_collection (gives a possibility to edit
a collection even if token is not attached to it)

11.2.4 Fetching collection information

You can fetch information about collection limits, strategy, description and more to be able to edit it using other
endpoints.

GET {{appUrl}}/repository/collection/SOME-COLLECTION-ID?_token=test-token-full-
→˓permissions

Notes:

• You need to have global permissions for managing any collection or to have token listed as allowed in collec-
tion you want to fetch

Required permissions:

• (just the token added as allowed for given collection)

Optional permissions:

• collections.modify_any_collection_regardless_if_token_was_allowed_by_collection (gives a possibility to edit
a collection even if token is not attached to it)

11.3 Authorization

Multiple tokens with different permissions could be assigned to the single collection. You may create a token for
uploading backups, deleting backups and for managing collection limits separately.

11.3.1 Assigning a token to the collection

POST /repository/collection/{{collection_id}}/token?_token={{collection_management_
→˓token}}

{

(continues on next page)

54 Chapter 11. Backup

File Repository Documentation, Release 2

(continued from previous page)

"token": "SO-ME-TO-KEN-TO-ADD"
}

Legend:

• {{collection_management_token}} is your token that has access rights to fully manage collection

• {{collection_id}} is an identifier that you will receive on collection creation (see collection creation endpoint)

Required permissions:

• collections.manage_tokens_in_allowed_collections

11.3.2 Revoking access to the collection for given token

DELETE /repository/collection/{{collection_id}}/token/{{token_id}}?_token={
→˓{collection_management_token}}

Legend:

• {{token_id}} identifier of a token that we want to disallow access to the collection

• {{collection_management_token}} is your token that has access rights to fully manage collection

• {{collection_id}} is an identifier that you will receive on collection creation (see collection creation endpoint)

Required permissions:

• collections.manage_tokens_in_allowed_collections

11.4 Backups: Upload, deletion and versioning

Assuming that you have already a collection and an access token, then we can start uploading files that will be ver-
sioned and stored under selected collection.

11.4.1 Uploading a new version to the collection

You need to submit file content in the HTTP request body. The rest of the parameters such as token you need to
pass as GET parameters.

POST /repository/collection/{{collection_id}}/backup?_token={{token_that_allows_to_
→˓upload_to_allowed_collections}}

.... FILE CONTENT THERE

Pretty simple, huh? As the result you will get the version number and the filename, something like this:

{
"status": "OK",
"error_code": null,
"exit_code": 200,
"field": null,
"errors": null,
"version": {

(continues on next page)

11.4. Backups: Upload, deletion and versioning 55

File Repository Documentation, Release 2

(continued from previous page)

"id": "69283AC3-559C-43FE-BFCC-ECB932BD57ED",
"version": 1,
"creation_date": {

"date": "2019-01-03 11:40:14.669724",
"timezone_type": 3,
"timezone": "UTC"

},
"file": {

"id": 175,
"filename": "ef61338f0dsolidarity-with-postal-workers-article-v1"

}
},
"collection": {

"id": "430F66C3-E4D9-46AA-9E58-D97B2788BEF7",
"max_backups_count": 2,
"max_one_backup_version_size": 1000000,
"max_collection_size": 5000000,
"created_at": {

"date": "2019-01-03 11:40:11.000000",
"timezone_type": 3,
"timezone": "UTC"

},
"strategy": "delete_oldest_when_adding_new",
"description": "Title: Solidarity with Postal Workers, Against State

→˓Repression!",
"filename": "solidarity-with-postal-workers-article"

}
}

Required permissions:

• collections.upload_to_allowed_collections

11.4.2 Deleting a version

A simple DELETE type request will delete a version from collection and from storage.

DELETE /repository/collection/{{collection_id}}/backup/BACKUP-ID?_token={{token}}

Example response:

{
"status": "OK, object deleted",
"error_code": 200,
"exit_code": 200

}

Parameters
type name description
bool simulate Simulate the request, do not delete in real. Could be used as pre-validation
string _token Standard access token parameter (optional, header can be used instead)

Required permissions:

• collections.delete_versions_for_allowed_collections

56 Chapter 11. Backup

File Repository Documentation, Release 2

11.4.3 Getting the list of uploaded versions

To list all existing backups under a collection you need just a collection id, and the permissions.

GET /repository/collection/{{collection_id}}/backup?_token={{token}}

Example response:

{
"status": "OK",
"error_code": null,
"exit_code": 200,
"versions": {

"3": {
"details": {

"id": "A9DAB651-3A6F-440D-8C6D-477F1F796F13",
"version": 3,
"creation_date": {

"date": "2019-01-03 11:40:24.000000",
"timezone_type": 3,
"timezone": "UTC"

},
"file": {

"id": 178,
"filename": "343b39f56csolidarity-with-postal-workers-article-v3"

}
},
"url": "https://my-anarchist-initiative/public/download/

→˓343b39f56csolidarity-with-postal-workers-article-v3"
},
"4": {

"details": {
"id": "95F12DAD-3F03-49B0-BAEA-C5AC3E8E2A30",
"version": 4,
"creation_date": {

"date": "2019-01-03 11:47:34.000000",
"timezone_type": 3,
"timezone": "UTC"

},
"file": {

"id": 179,
"filename": "41ea3dcca9solidarity-with-postal-workers-article-v4"

}
},
"url": "https://my-anarchist-initiative/public/download/

→˓41ea3dcca9solidarity-with-postal-workers-article-v4"
}

}
}

Required permissions:

• collections.list_versions_for_allowed_collections

11.4.4 Downloading uploaded versions

Given we upload eg. 53 versions of a SQL dump, one each month and we want to download latest version, then we
need to call the fetch endpoint with the “latest” keyword as the identifier.

11.4. Backups: Upload, deletion and versioning 57

File Repository Documentation, Release 2

GET /repository/collection/{{collection_id}}/backup/latest?password={{collection_
→˓password_to_access_file}}&_token={{token}}

If there is a need to download an older version of the file, a version number should be used, eg. v49

GET /repository/collection/{{collection_id}}/backup/v49?password={{collection_
→˓password_to_access_file}}&_token={{token}}

There is also a possibility to download a last copy from the bottom, the oldest version available using keyword first.

GET /repository/collection/{{collection_id}}/backup/first?password={{collection_
→˓password_to_access_file}}&_token={{token}}

In case we have an ID of the version, then it could be inserted directly replacing the alias keyword.

GET /repository/collection/{{collection_id}}/backup/69283AC3-559C-43FE-BFCC-
→˓ECB932BD57ED?password=thats-a-secret&_token={{token}}

Parameters
type name description
bool redirect Allows to disable HTTP redirection and return JSON with the url address instead
string password Password required for requested FILE (please read about passwords in notes section)
string _token Standard access token parameter (optional, header can be used instead)

Required permissions:

• collections.list_versions_for_allowed_collections

• (knowing the password for the collection file)

Notes:

• The password for the file is inherited from collection, but it may be different in case when the collection would
have changed the password, old files would not be updated!

11.5 Data replication

File Repository does not replicate the data on application level as it does not make sense to do so. There are specialized
filesystems such as S3, Glusterfs or DRBD, specialized database servers that handles primary-replica and primary-
primary replication.

When setting up the replication you need to remember, that the application itself cannot keep any state locally, that’s
the rule of the replication. Often people forget about the application cache, which is not so obvious.

There are 3 areas that needs to be replicated, so the application could be scaled:

• Storage backend

• Database

• Cache

11.5.1 Choosing scalable storage backends for File Repository

• Min.io (using S3 adapter)

58 Chapter 11. Backup

File Repository Documentation, Release 2

• Amazon S3 (using S3 adapter)

• GlusterFS (local filesystem)

• DRBD (local filesystem)

• Ceph (local filesystem)

11.5.2 Selecting a scalable database

Any modern database server supports the replication, it’s up to you to pick the best. At RiotKit we are preferring
PostgreSQL. Please note that SQLite3 is a tiny scale in-file database that does not scale.

• PostgreSQL

• MySQL

• Oracle

• Microsoft SQL Server

11.6 Managing collections from shell

To allow automating things there are shell commands, those do not require authorization and have the same parameters
as API endpoints.

11.6.1 Creating collections

The command will return just a collection id on success. On failure a json is returned.

Example success output:

./bin/console backup:create-collection -d "Some test collection" -f "backup.tar.gz" -
→˓b 4 -o 3GB -c 15GB
48449389-E267-497E-A6F4-EAC91C063708

Example failure output:

./bin/console backup:create-collection -d "Some test collection" -f "backup.tar.gz" -
→˓b 4 -o 3GB -c 1GB
{

"status": "Logic validation error",

(continues on next page)

11.6. Managing collections from shell 59

File Repository Documentation, Release 2

(continued from previous page)

"error_code": 4003,
"http_code": 400,
"errors": {

"maxCollectionSize": "max_collection_size_is_lower_than_single_element_size"
},
"collection": null,
"context": []

}

Note: Use –id parameter to assign custom id for the collection. Helpful in deployment automation.

Note: Use –ignore-error-if-token-exists in scripts

60 Chapter 11. Backup

CHAPTER 12

MinimumUI

Although that File Repository is an API project, it has a few HTML endpoints which are allowing to upload files.
MinimumUI idea is to allow to use File Repository as a fully standalone microservice, with easy to use embeddable
upload forms on any website.

12.1 Quick start in steps

1. Your application needs to have a possibility to create tokens in File Repository on backend side (no one should
see your administrative token).

2. For each user you need to generate a temporary token with minimal permissions (eg. upload only, with restric-
tions for password, mime types, tags etc.)

3. On your website you need to redirect user to the file repository upload form (MinimumUI endpoint) with speci-
fying the “back” parameter in query string, so the user will go back on your website again and pass the uploaded
file URL

4. You need to validate the URL from your user, if it comes eg. from proper domain where File Repository runs

12.2 Endpoints

Following endpoints are just displaying a static HTML page, that acts as a client to the API. No any endpoint is
implementing any additional access rights, if the user does not have access to perform some action, then the page
would display, but the backend will respond with an error.

If you need to restrict the file size, mime type, allowed tags or others, then you need to specify it in the access token
that will be used in the UI.

61

File Repository Documentation, Release 2

Roles used by the endpoints
name description
upload.enforce_no_password Enforce the file to be uploaded without a password
upload.enforce_tags_selected_in_token Tag uploaded file with tags specified in the token, regardless of user

choice
upload.images Upload images

12.2.1 Image Upload

The image upload endpoint allows to upload whole file as is, or with cropping it. Cropper supports an aspect ratio,
that could be specified in the query string.

Extra parameters in query string
name description
ratio Aspect ratio for the images eg. 16/9 is 1.77, so it would be ?ratio=1.77
back URL address to redirect the user on success. FILE_REPOSITORY_URL phrase will be replaced

with the uploaded file URL
_token Access token

In the browser access URL: /minimum.ui/upload/image?_token=TOKEN-THERE

62 Chapter 12. MinimumUI

File Repository Documentation, Release 2

12.2. Endpoints 63

File Repository Documentation, Release 2

12.2.2 File upload

File upload offers a multiple file upload, with drag & drop and fancy animations.

In the browser access URL: /minimum.ui/upload/file?_token=TOKEN-THERE

64 Chapter 12. MinimumUI

File Repository Documentation, Release 2

12.2. Endpoints 65

File Repository Documentation, Release 2

66 Chapter 12. MinimumUI

File Repository Documentation, Release 2

12.2. Endpoints 67

File Repository Documentation, Release 2

12.2.3 Video watching

File Repository is able to serve video files with possibility to rewind them, that’s the responsibility of the download
endpoint. MinimumUI exposes additional endpoint with a HTML5 <video> tag, so the video could be embedded
easily on other website.

In the browser access URL: /minimum.ui/watch/video/some-file-name.mp4

68 Chapter 12. MinimumUI

CHAPTER 13

SecureCopy

Storage mirroring with additional layer of security - encryption on the server side.

Features:

• Each client have it’s own permissions.

• Encryption credentials are per-client (in token generated in File Repository)

• Black-box/Zero-knowledge encryption, the client only retrieve data

• External, ready to use client application “kropot-cli” that will help you to better redistribute your bread ;-)

The difference between “rsync” type tools and File Repository’s Secure Copy
File Repository Other tools such as rsync
Token based authorization Requires SSH access
Independent of storage filesystem (s3, local, other net-
worked)

Requires local disk access

Encryption on server side, without sharing the key to
client

Impossible to perform a on-fly encryption, when client
requests the files

Requires additional setup time, requires database,
maintenance time

Less maintenance, no database required, less frequent up-
dates

Brand new tool, nobody recognizes it Everybody know the basic UNIX tools, less entry thresh-
old

69

File Repository Documentation, Release 2

13.1 SecureCopy API endpoints

Copying mechanism exposes a list of files with a pagination/buffer, and a download endpoint.

The data in download endpoint can be encrypted or not, it depends on who is actually requesting the data. If a person
with token, that has encryption enabled is requesting a file, then it will be encrypted. The person does not need to
know the token, it will only receive a black-box data without having a knowledge what’s inside.

Roles used by the endpoints
name description
securecopy.stream Can stream list of all files in storage, it’s metadata and file content (in encrypted or not

encrypted form)
secure-
copy.all_secrets_read

(Administrative) Can read all tokens encryption secrets

70 Chapter 13. SecureCopy

CHAPTER 14

Bahub API client

Bahub is an automation tool for uploading and restoring backups. Works in shell, can work as a docker container
in the same network with scheduled automatic backups of other containers, or can work as an UNIX daemon on the
server without containerization.

14.1 Configuration reference

There are 3 sections:

• Access: Describes authorization details, name it eg. server1 and put url and token

• Encryption: Encryption type and password (if any) to encrypt your files stored on File Repository

• Backups: Describes where is your data, how to access it and under which COLLECTION to send it to File
Repository

• Recoveries: Recovery plans. A policy + list of “backups” to restore within a single command

Example scenario:

71

File Repository Documentation, Release 2

1. You have a server under https://backups.iwa-ait.org and token “XXX-YYY-ZZZ-123”, you name it
“ait_backups” under access section

2. You want to have encrypted backups using AES 256 CBC, then you add “ait_secret” under encryption with
passphrase “something-secret” and type “aes-256-cbc”

3. Next you want to define where is the data, in our example it’s in a docker container under /var/lib/mysql and
we want to send this data to collection “123-456-789-000”. You should reference “ait_backups” access and
“ait_secret” as the encryption method for your backup there.

14.1.1 Environment variables

If you want to use environment variables, use bash-like syntax ${SOME_ENV_NAME}.

NOTE: In case you will not set a variable in the shell, then application will not start, it will throw a configuration
error.

14.1.2 Application configuration

Notice: Below example uses environment variables eg. ${DB_HOST}, you may want to replace them with values
like localhost or others

#
Access information about the storage server (File Repository), the URL, token
In "backups" section you should use name of an access as a reference in field
→˓"access"
#
accesses:

backup_one:
url: http://localhost:8000
token: test-token-full-permissions

#
Allows to define an encryption and identify it with name
In "backups" section you should use just the name as reference in "encryption" key
→˓of a backup
#
encryption:

#
Example of AES-256-CBC encryption (uses OpenSSL)
#
Decryption command example:
cat 0ad166b4cfbackup.tar-v5.gz| openssl enc -aes-256-cbc -pbkdf2 -d -pass

→˓pass:some-encryption-key-here > ./backup.tar.gz
#
enc1:

passphrase: some-encryption-key-here
method: aes-256-cbc # possible values: aes-256-cbc, aes-256-ecb, aes-128-

→˓cbc, aes-128-ecb, des-ecb
#encrypt_cmd: openssl enc -%method% -pass pass:%pass%
#decrypt_cmd: openssl enc -d -%method% -pass pass:%pass%

none:
passphrase: ""
method: ""

(continues on next page)

72 Chapter 14. Bahub API client

https://backups.iwa-ait.org

File Repository Documentation, Release 2

(continued from previous page)

#
Backups - list of backups, each backup = single archive = single collection.
To backup invoke the shell command with a backup name eg. bahub backup
→˓www_uploads
To restore invoke eg. bahub restore www_uploads latest
#
backups:

#
Online / Hot-backup of docker container example
#
Copies data from running container.
NOTICE: May be dangerous to your data, please make sure you know what you do.
In most cases please choose "docker_volumes" method for safe, offline

→˓backup.
#
docker_hot_volumes_example:

type: docker_hot_volumes
container: "test_www"
access: backup_one
encryption: none
collection_id: "${COLLECTION_ID}"
paths:

- /var/www
- /var/log

optional
#tar_pack_cmd: "tar -czf %stdin% %paths%"
#tar_unpack_cmd: "tar -xzf %stdin% %target%"
#docker_bin: "sudo docker"

#
Offline backup of docker container
#
Stops the container, copies the data, then starts it again
Fully safe method of backup for all types of services. Makes a downtime, but

→˓guarantees a non-corrupted
backup data.
#
www_docker_offline:

type: docker_volumes
container: "test_www"
access: backup_one
encryption: enc1
collection_id: "${COLLECTION_ID}"
paths:

- /etc
- /var/lib/mysql
- /var/log

optional
docker_bin: "sudo docker"
tar_pack_cmd: "tar -czf %stdin% %paths%"
tar_unpack_cmd: "tar -xzf %stdin% %target%"
temp_image_name: "alpine:3.9"

(continues on next page)

14.1. Configuration reference 73

File Repository Documentation, Release 2

(continued from previous page)

temp_image_cmd: "apk add --update xz bzip2 && sleep 3600"

#
MySQL online backup using mysqldump
#
Can backup a single database or all databases from any MySQL server, local,

→˓in-docker or remote.
Notice: Restoring backups is only possible for SINGLE DATABASES
#
mysql_native_single_database:

type: mysql
host: "${DB_HOST}"
port: 3306
user: root
password: root
database: "${DB_DATABASE}"
access: backup_one
encryption: none
collection_id: "${COLLECTION_ID}"

#
MySQL online backup using mysqldump (DOCKER)
#
Can backup a single database or all databases from any MySQL server, local,

→˓in-docker or remote.
Notice: Restoring backups is only possible for SINGLE DATABASES
#
mysql_docker_single_database:

type: mysql
host: localhost
port: 3306
user: root
password: root
database: "${DB_DATABASE}"
container: "test_mysql" # this one is required to use a docker container
access: backup_one
encryption: none
collection_id: "${COLLECTION_ID}"

optional:
#tar_pack_cmd: "tar -czf %stdin% %paths%"
#tar_unpack_cmd: "tar -xzf %stdin% %target%"

#
Docker command output online backup
#
Executes command in a Docker container and captures output
#
docker_command_output:

type: docker_output
container: "test_www"
command: "cat /bin/sh"
restore_command: "cat - > /tmp/sh.restored"
access: backup_one
encryption: enc1
collection_id: "${COLLECTION_ID}"

(continues on next page)

74 Chapter 14. Bahub API client

File Repository Documentation, Release 2

(continued from previous page)

optional
#docker_bin: "sudo docker"

#
PostgreSQL backup using pg_dumpall. For restore psql is used.
#
postgres:

type: postgres
access: backup_one
encryption: enc1
collection_id: "${COLLECTION_ID}"
host: "localhost"
port: 5432
user: "${POSTGRES_USER}"
password: "${POSTGRES_PASSWORD}"
database: ""

#
PostgreSQL backup using pg_dump to dump single database. For restore psql is

→˓used.
#
postgres_single_db:

type: postgres
access: backup_one
encryption: enc1
collection_id: "${COLLECTION_ID}"
host: "localhost"
port: 5432
user: "${POSTGRES_USER}"
password: "${POSTGRES_PASSWORD}"
database: "some_db_name"

#
PostgreSQL backup using pg_basebackup command (replication mode backup)
#
postgres_base:

type: postgres_base
access: backup_one
encryption: enc1
collection_id: "${COLLECTION_ID}"
host: "localhost"
port: 5432
user: "${POSTGRES_USER}"
password: "${POSTGRES_PASSWORD}"
database: "${POSTGRES_DB}"

server_shutdown_cmd: "sudo docker stop fr_tests_postgresql_1" # can there be
→˓pg_ctl used, or systemctl also

server_start_cmd: "sudo docker start fr_tests_postgresql_1"
restore_dir: "${CONFIG_DIR}/.data/postgresql"
old_dir: "${CONFIG_DIR}/.data/postgresql-old"
ownership: "70:70" # postgres user id and group, can be also names. For

→˓docker containers it is recommended to use ids

#
Execute a local command
#

(continues on next page)

14.1. Configuration reference 75

File Repository Documentation, Release 2

(continued from previous page)

Executes command on this machine/environment on local shell and captures
→˓output

#
local_command_output:

type: command_output
command: "cat /bin/bash"
restore_command: "cat - > /tmp/bash.restored"
access: backup_one
encryption: enc1
collection_id: "${COLLECTION_ID}"

#
Local file/directory backup
#
Packs a local directory or file
#
some_local_dir:

type: directory
paths:

- /tmp/test
access: backup_one
encryption: enc1
collection_id: "${COLLECTION_ID}"

optional
#tar_pack_cmd: "tar -czf %stdin% %paths%"
#tar_unpack_cmd: "tar -xzf %stdin% %target%"

#
Recovery plans
Restores multiple backups in order, using single command
#
Possible values:
policy:
- restore-whats-possible: Ignore things that cannot be restored, restore what
→˓is posible
- stop-on-first-error: Restore until first error, then stay as it is
#
recoveries:

default:
policy: restore-whats-possible
definitions: all

some_selected_only:
policy: stop-on-first-error
definitions:

- some_local_dir
- local_command_output

#
Optional: Error handlers, very helpful to track backup errors
Be careful! Your shell commands for backup/restore may fail some time, it
→˓'s worth to have a notification.
You can set up a free account on sentry.io, install a Sentry instance on
→˓your server, or use eg. Mattermost/Slack notifications
#
#error_handlers:

(continues on next page)

76 Chapter 14. Bahub API client

File Repository Documentation, Release 2

(continued from previous page)

remote_sentry:
type: sentry
url: "${SENTRY_IO}"

#
Optional: Notifications. Can notify when backup starts, ends, there is an error etc.
#

#notifiers:
mattermost:
type: slack
url: "https://xxxxx"

14.2 Basic usage

Bahub is offering basic operations required to automate backup sending and receiving, not managing the server.

14.2.1 Sending a backup

$ bahub --config ~/.bahub.yaml backup some_local_dir
{'version': 72, 'file_id': 'E9D7103D-1789-475E-A3EE-9CF18F51ACA4', 'file_name':
→˓'2b2e269541backup.tar-v72.gz'}

14.2.2 Listing stored backups

$ bahub --config ~/.bahub.yaml list some_local_dir
{

"v71": {
"created": "2019-02-10 14:27:52.000000",
"id": "1684C60D-28B0-4818-A3EC-1F0C47981592"

},
"v72": {

"created": "2019-02-11 07:54:52.000000",
"id": "E9D7103D-1789-475E-A3EE-9CF18F51ACA4"

}
}

14.2.3 Restoring a backup

Restoring latest version:

$ bahub --config ~/.bahub.yaml restore some_local_dir latest
{"status": "OK"}

Restoring version by number:

$ bahub --config ~/.bahub.yaml restore some_local_dir v71
{"status": "OK"}

14.2. Basic usage 77

File Repository Documentation, Release 2

Restoring version by id:

$ bahub --config ~/.bahub.yaml restore some_local_dir 1684C60D-28B0-4818-A3EC-
→˓1F0C47981592
{"status": "OK"}

14.2.4 Recovery from disaster

In case you need to quickly recover whole server/environment from backup - there is a RECOVERY PLAN. A
recovery plan is:

• List of backups to restore (names from section “backups”)

• Policy of recovery (eg. recover everything, or stop on failure)

#
Recovery plans
Restores multiple backups in order, using single command
#
Possible values:
policy:
- restore-whats-possible: Ignore things that cannot be restored, restore what
→˓is posible
- stop-on-first-error: Restore until first error, then stay as it is
#
recoveries:

default:
policy: restore-whats-possible
definitions: all

plan_2:
policy: stop-on-first-error
definitions:

- local_command_output

$ bahub --config ~/.bahub.yaml recover default

14.2.5 Making a snapshot of multiple services at once

Snapshot works exactly in the same way as recovery from diaster, but it’s inverted. Instead of downloading a copy,
it is actually uploading.

NOTICE: Be very careful, as this is a single command to backup everything, remember about the backups
rotation

$ bahub --config ~/.bahub.yaml snapshot default

[2019-04-01 07:17:42,818][bahub][INFO]: Performing snapshot
[2019-04-01 07:17:42,819][bahub][INFO]: Performing a snapshot using "default" plan
[2019-04-01 07:17:42,819][bahub][DEBUG]: shell(sudo docker ps | grep "test_1")
[2019-04-01 07:17:42,870][bahub][DEBUG]: shell(set -o pipefail; sudo docker exec
→˓test_1 /bin/sh -c "[-e /etc] || echo does-not-exist"; exit $?)
[2019-04-01 07:17:42,967][bahub][DEBUG]: shell(set -o pipefail; sudo docker exec
→˓test_1 /bin/sh -c "tar -czf - \"/etc\" "| openssl enc -aes-128-cbc -pass
→˓pass:Q***W; exit $?)

(continues on next page)

78 Chapter 14. Bahub API client

File Repository Documentation, Release 2

(continued from previous page)

[2019-04-01 07:17:43,052][bahub][DEBUG]: shell(set -o pipefail; sudo docker exec
→˓test_1 /bin/sh -c "tar -czf - \"/etc\" "| openssl enc -aes-128-cbc -pass
→˓pass:Q***W; exit $?)
[2019-04-01 07:17:45,672][bahub][DEBUG]: Request: https://api.backups.riotkit.org/
→˓repository/collection/d*************************************9/backup?_
→˓token=a***********************************6
[2019-04-01 07:17:45,672][bahub][DEBUG]: response({"status":"OK","error_code":null,
→˓"exit_code":200,"field":null,"errors":null,"version":{"id":"***************",
→˓"version":1,"creation_date":{"date":"2019-04-01 05:17:45.492490","timezone_type":3,
→˓"timezone":"UTC"},"file":{"id":110,"filename":"cd06f449fdtest-v2"}},"collection":{
→˓"id":"d*************************************9","max_backups_count":1,"max_one_
→˓backup_version_size":2000000000,"max_collection_size":8000000000,"created_at":{"date
→˓":"2019-03-24 21:29:14.000000","timezone_type":3,"timezone":"UTC"},"strategy":
→˓"delete_oldest_when_adding_new","description":"TEST","filename":"test"}})
[2019-04-01 07:17:45,673][bahub][INFO]: Finishing the process

{
"failure": [],
"success": [

"test"
]

}

14.3 Monitoring errors with Sentry

Bahub uses shell commands to take some data, pack it and encrypt. What if any of those commands will fail? What if
there are no enough permissions? What if the directory does not exist? All of those are good reasons to have set up a
monitoring.

Almost each application failure can be catched and sent to analysis. Don’t worry about the privacy, you can use your

14.3. Monitoring errors with Sentry 79

File Repository Documentation, Release 2

own Sentry instance.

To enable the monitoring you need to have a ready-to-use Sentry instance/account and a error_handler configured in
Bahub.

error_handlers:
remote_sentry: # name it as you want

type: sentry
url: "https://some-url"

14.4 Slack/Mattermost notifications

Each event such as upload success, restore success, or a failure can emit a notification.

notifiers:
mattermost: # name it as you want

type: slack # compatible with Slack and Mattermost
url: "https://xxxxx"

14.5 Setup

Bahub can be running as a separate container attached to docker containers network or manually as a regular process.
The recommended way is to use a docker container, which provides a working job scheduling, installed dependencies
and a warranty that it will work.

14.6 Using docker container

There exists a repository quay.io/riotkit/bahub, for testing purposes you can pick “latest-build” tag, for production it
is recommended to pick a fixed version. Example installation on the simplest construction - docker-compose is placed
in “examples/client” directory in the repository.

Running a demo

We prepared a demo environment that has a Bahub client, a Redis container and the File Repository server in one
network. It’s recommended to have client and server separated on different servers.

Take a look around, and create your own docker-compose, kubernetes or plain docker setup basing on our demo
configuration.

80 Chapter 14. Bahub API client

https://github.com/riotkit-org/file-repository/tree/master/examples/client

File Repository Documentation, Release 2

git clone https://github.com/riotkit-org/file-repository
cd file-repository/examples/client
make start
make sh

14.7 Without docker

Use Python’s PIP to install the package, and run it.

pip install bahub
bahub --help

14.7. Without docker 81

File Repository Documentation, Release 2

82 Chapter 14. Bahub API client

CHAPTER 15

Shell access

File Repository usage can be automated using shell commands. There are not so many commands, but basic usage
could be automated using scripts.

It is very helpful to create initially all required tokens and collections, so you can connect applications quickly and
start doing backups or just file storing.

15.1 Introduction

Symfony Console is accessible in the main directory under ./bin/console When using docker you need to get into the
container shell to execute it, in our example server environment you need to execute make sh to get into the server’s
shell.

./bin/console backup:create-collection -d "Some test collection" -f "backup.tar.gz" -
→˓b 4 -o 3GB -c 15GB

If something is not working as expected, there is an error and you would like to inspect it, then please add a “-vvv”
switch to increase verbosity.

15.2 Docker container concept

Our container allows to execute commands during startup to help you with the application setup. With this feature you
can create expected tokens, collections on application startup without need to send any HTTP requests or even log in
to the shell. It’s an automation you will love.

Example in docker-compose syntax

version: '2.3'
services:

filerepository:
image: quay.io/riotkit/file-repository:${FILE_REPOSITORY_VERSION}

(continues on next page)

83

File Repository Documentation, Release 2

(continued from previous page)

environment:
With this token you can do everything
SECURITY_ADMIN_TOKEN: "4253f6e5-5c0b-4888-8027-d36bf02eee04"

Create a two backup collections, so right after startup you can run a
→˓backup, WHY NOT? :-)

Please notice, that you can easily use there environment variables
POST_INSTALL_CMD:

./bin/console backup:create-collection --ignore-error-if-exists --max-
→˓backups-count=5

--max-one-version-size=10mib --max-collection-size=2gib --
→˓strategy=delete_oldest_when_adding_new

--filename=postgres.sql.gz --id=3dfa4ea9-1cec-4e24-b773-
→˓1cefb9c112c2;

./bin/console backup:create-collection --ignore-error-if-exists --max-
→˓backups-count=5

--max-one-version-size=5kib --max-collection-size=50kib --
→˓strategy=delete_oldest_when_adding_new

--filename=postgres-single-db.sql.gz --id=${COLLECTIONS_POSTGRES_
→˓SINGLE_DB_ID};

15.2.1 Technical shell commands

For better experience and less frustration we implemented a few commands that improves deployment and overall
application maintenance. Also the Symfony Framework, that we use implements tons of useful shell utilities worth
looking at.

Wait for database

wait for application's database to be ready
./bin/console health:wait-for:database --timeout=300

Wait for other File Repository instance to be up

./bin/console health:wait-for:instance https://api.backups.riotkit.org --timeout=2 --
→˓token=9b46f515-86d3-4d81-84e9-d4f5434f98f7

Health check

Does same thing as HTTP health check endpoint, but does not require authorization.

./bin/console health:check

Dump database connection information

Very useful in debugging configuration of the database. The command dumps already parsed parameters of the Doc-
trine DBAL driver.

84 Chapter 15. Shell access

File Repository Documentation, Release 2

$./bin/console doctrine:connection:info
==> Parameters:
^ array:12 [

"driver" => "pdo_pgsql"
"charset" => "UTF8"
"default_dbname" => "rojava"
"dbname" => "rojava"
"host" => "/var/run/postgresql"
"password" => "rojava"
"user" => "riotkit"
"port" => "5432"
"path" => "./var/data.db"
"driverOptions" => []
"serverVersion" => "11"
"defaultTableOptions" => array:2 [
"charset" => "UTF8"
"collate" => "pl_PL.UTF8"

]
]

==> Database:
^ "rojava"

==> Platform:
^ "postgresql"

15.2. Docker container concept 85

File Repository Documentation, Release 2

86 Chapter 15. Shell access

CHAPTER 16

General guide for Administrators, DevOps and Developers

There is a general guide on how to maintain a backup server, what is the common approach to setup a server from
Riotkit template and more.

The guide is on a separate repository: https://github.com/riotkit-org-education/guide

Check also our RiotKit Education organization at https://github.com/riotkit-org-education , where we teach basic and
mid-advanced things.

87

https://github.com/riotkit-org-education/guide
https://github.com/riotkit-org-education

File Repository Documentation, Release 2

88 Chapter 16. General guide for Administrators, DevOps and Developers

CHAPTER 17

From authors

Project was started as a part of RiotKit initiative, for the needs of grassroot organizations such as:

• Fighting for better working conditions syndicalist (International Workers Association for example)

• Tenants rights organizations

• Various grassroot organizations that are helping people to organize themselves without authority

Technical description:

Project was created in Domain Driven like design in PHP 7, with Symfony 4 framework. There are API tests written
in Postman and unit tests written in PhpUnit. Feel free to submit pull requests, report issues, or join our team. The
project is licensed with a MIT license.

RiotKit Collective

89

	First steps
	Manual installation
	Installation with docker
	Development environment setup
	Post-installation
	Configuration reference
	Application configuration
	Permissions list
	Docker container extra parameters
	PostgreSQL support

	Docker, releases and versioning
	Using postman to manage the application
	Authorization
	Creating a token
	Searching tokens
	Looking up a token
	Revoking a token
	Managing authentication using console commands
	Token load hierarchy

	Files storage
	Security
	Uploading
	Downloading
	Aliasing filenames (migrating existing files to File Repository)
	Hotlink protection - personalizing URLs for your visitors
	Listing and searching

	Backup
	Getting started
	Managing collections
	Authorization
	Backups: Upload, deletion and versioning
	Data replication
	Managing collections from shell

	MinimumUI
	Quick start in steps
	Endpoints

	SecureCopy
	SecureCopy API endpoints

	Bahub API client
	Configuration reference
	Basic usage
	Monitoring errors with Sentry
	Slack/Mattermost notifications
	Setup
	Using docker container
	Without docker

	Shell access
	Introduction
	Docker container concept

	General guide for Administrators, DevOps and Developers
	From authors

