
File Repository Documentation
Release 2

Wolnosciowiec Team

Nov 16, 2019

Contents:

1 First steps 3

2 Manual installation 5

3 Installation with docker 7

4 Post-installation 9

5 Configuration reference 11
5.1 Application configuration . 11
5.2 Permissions list . 11
5.3 Docker container extra parameters . 11
5.4 PostgreSQL support . 12

6 Docker, releases and versioning 13

7 Using postman to manage the application 15

8 Authorization 19
8.1 Creating a token . 19
8.2 Looking up a token . 20
8.3 Revoking a token . 21

9 Files storage 23
9.1 Security . 23
9.2 Uploading . 24
9.3 Downloading . 25
9.4 Aliasing filenames (migrating existing files to File Repository) . 26
9.5 Hotlink protection - personalizing URLs for your visitors . 27
9.6 Listing and searching . 28

10 Backup 31
10.1 Getting started . 31
10.2 Managing collections . 32
10.3 Authorization . 34
10.4 Backups: Upload, deletion and versioning . 35
10.5 Data replication . 38
10.6 Managing collections from shell . 38

i

11 MinimumUI 41
11.1 Quick start in steps . 41
11.2 Endpoints . 41

12 Bahub API client 49
12.1 Configuration reference . 49
12.2 Basic usage . 50
12.3 Monitoring errors with Sentry . 53
12.4 Notifications . 54
12.5 Setup . 54
12.6 Using docker container . 54
12.7 Using bare metal . 55

13 Shell access 57
13.1 Introduction . 57

14 General guide for Administrators, DevOps and Developers 61

15 From authors 63

ii

File Repository Documentation, Release 2

File Repository is a modern API application dedicated for storing files. It is able to use various storage backends
including AWS S3, Dropbox, Google Drive and just filesystem. Lightweight, requires just PHP7 and at least SQLite3
or MySQL (other databases can be also supported in future due to using ORM).

Main functionality:

• Strict access control, you can generate a token that will have access to specific actions on specific items

• Store files where you need; on AWS S3, Minio.io, FTP, local storage and others. . .

• Deduplication for non-grouped files. There will be no duplicated files stored on your disk

• Backups management, you can define a collection of file versions that can rotate on adding a new version

• API + lightweight frontend

• Ready to integrate upload forms for your applications. Only generate token and redirect a user to an url

Contents: 1

File Repository Documentation, Release 2

2 Contents:

CHAPTER 1

First steps

To start using the application you need to install PHP 7.3 with extensions listed in composer.json file (see entries
ext-{name}), composer.

You can also use a ready-to-use docker container instead of using host installation of PHP, if you have a possibility
always use a docker container.

Summary of application requirements:

• PHP 7.3 or newer

• SQLite3, MySQL 5.7+ or PostgreSQL 10+

• Composer (PHP package manager, see packagist.org)

• make (GNU Make)

Notice: For PostgreSQL configuration please check the configuration reference at PostgreSQL support page

3

File Repository Documentation, Release 2

4 Chapter 1. First steps

CHAPTER 2

Manual installation

At first you need to create your own customized .env file with application configuration. You can create it from a
template .env.dist.

Make sure the APP_ENV is set to prod, and that the database settings are correct. On default settings the application
should be connecting to a SQLite3 database placed in local file, but this is not optimal for production usage.

cd server
cp .env.dist .env
edit .env

To install the application - download dependencies, install database schema use the make task install.

make install

All right! The application should be ready to go. To check the application you can launch a development web server.

make run_dev

5

File Repository Documentation, Release 2

6 Chapter 2. Manual installation

CHAPTER 3

Installation with docker

There are at least three choices:

• Use quay.io/riotkit/file-repository container by your own (advanced)

• Generate a docker-compose.yaml using make print VARIANT=”s3 postgres persistent” in server/env directory

• Create your own environment basing on provided example docker-compose

Proposed way to choose is the prepared docker-compose environment that is placed in server/env directory.

Starting the example environment:

cd ./server/env
make up VARIANT="s3 postgres persistent"

Generating a docker-compose example file:

cd ./server/env
make print VARIANT="s3 postgres persistent"

Production tips:

• Use external database, do backups

• Do not use SQLite3 for production. Use PostgreSQL or MySQL instead.

• Mount data as volumes. Use bind-mounts to have files placed on host filesystem (volumes can be deleted,
bind-mounted files stays anyway)

7

File Repository Documentation, Release 2

8 Chapter 3. Installation with docker

CHAPTER 4

Post-installation

At this point you have the application, but you do not have access to it. You will need to generate an administrative
access token to be able to create new tokens, manage backups, upload files to storage. To achieve this goal you need
to execute a simple command.

Given you use docker you can do eg. sudo docker exec some-container-name ./bin/console auth:generate-admin-
token, for bare metal installation it would be just ./bin/console auth:generate-admin-token in the project directory.

So, when you have an administrative token, then you need a token to upload backups. It’s not recommended to use
administrative token on your servers. Recommended way is to generate a separate token, that is allowed to upload
a backup to specified collection

To do so, check all available roles in the application:

GET /auth/roles?_token=YOUR-ADMIN-TOKEN-HERE

Note: If you DO NOT KNOW HOW to perform a request, then please check the postman section

You should see something like this:

{
"roles": {

"upload.images": "Allows to upload images",
"upload.documents": "Allows to upload documents",
"upload.backup": "Allows to submit backups",
"upload.all": "Allows to upload ALL types of files regardless of mime type",
"security.authentication_lookup": "User can check information about ANY token

→˓",
"security.overwrite": "User can overwrite files",
"security.generate_tokens": "User can generate tokens with ANY roles",
"security.use_technical_endpoints": "User can use technical endpoints to

→˓manage the application",
"deletion.all_files_including_protected_and_unprotected": "Delete files that

→˓do not have a password, and password protected without a password",
"view.any_file": "Allows to download ANY file, even if a file is password

→˓protected",

(continues on next page)

9

File Repository Documentation, Release 2

(continued from previous page)

"view.files_from_all_tags": "List files from ANY tag that was requested, else
→˓the user can list only files by tags allowed in token",

"view.can_use_listing_endpoint_at_all": "Define that the user can use the
→˓listing endpoint (basic usage)",

"collections.create_new": "Allow person creating a new backup collection",
"collections.allow_infinite_limits": "Allow creating backup collections that

→˓have no limits on size and length",
"collections.modify_any_collection_regardless_if_token_was_allowed_by_

→˓collection": "Allow to modify ALL collections. Collection don't have to allow such
→˓token which has this role",

"collections.view_all_collections": "Allow to browse any collection
→˓regardless of if the user token was allowed by it or not",

"collections.can_use_listing_endpoint": "Can use an endpoint that will allow
→˓to browse and search collections?",

"collections.manage_tokens_in_allowed_collections": "Manage tokens in the
→˓collections where our current token is already added as allowed",

"collections.upload_to_allowed_collections": "Upload to allowed collections",
"collections.list_versions_for_allowed_collections": "List versions for

→˓collections where the token was added as allowed",
"collections.delete_versions_for_allowed_collections": "Delete versions only

→˓from collections where the token was added as allowed"
}

}

To allow only uploading and browsing versions for assigned collections you may choose:

POST /auth/token/generate?_token=YOUR-ADMIN-TOKEN-THERE
{

"roles": ["upload.backup", "collections.upload_to_allowed_collections",
→˓"collections.list_versions_for_allowed_collections"],

"data": {
"tags": [],
"allowedMimeTypes": [],
"maxAllowedFileSize": 0

}
}

As the response you should get the token id that you need.

{
"tokenId": "34A77B0D-8E6F-40EF-8E70-C73A3F2B3AF8",
"expires": null

}

Remember the tokenId, now you can create collections and grant access for this token to your collections. Generated
token will be able to upload to collections you allow it to.

Check next steps:

1. Collection creation

2. Assigning a token to the collection

That’s all.

10 Chapter 4. Post-installation

CHAPTER 5

Configuration reference

5.1 Application configuration

When setting up application without a docker a .env file needs to be created in the root directory of the application.
The .env.dist is a template with example, reference values. If you use a docker image, then you may use those variables
as environment variables for the container.

5.2 Permissions list

You can get a permissions list by accessing an endpoint in your application:

GET /auth/roles?_token=test-token-full-permissions

There is also an always up-to-date permissions list, taken directly from the recent version of the application.

How to read the list by example:

/** Allows to upload images */
public const ROLE_UPLOAD_IMAGES = 'upload.images';

Legend:

• Between /** and */ is the description

• upload.images is the role name

5.3 Docker container extra parameters

Parameters passed to docker container are mostly application configuration parameters, but not only. There exists extra
parameters that are implemented by the docker container itself, they are listed below:

11

File Repository Documentation, Release 2

Name and example Description
WAIT_FOR_HOST=db_mysql:3306 (optional) Waits up to 2 minutes for host to be up when starting a container
SENTRY_DSN=url-here (optional) Enables integration with sentry.io, so all failures will be logged

there

5.4 PostgreSQL support

1. Required extensions: - uuid-ossp (CREATE EXTENSION “uuid-ossp”;)

2. Due to lack of Unix sockets support in Doctrine Dbal library we created a custom PostgreSQL adapter.

UNIX Socket example:

DATABASE_URL=
POSTGRES_DB_PDO_ROLE=... (in most cases same as username)
POSTGRES_DB_PDO_DSN="pgsql:host=/var/run/postgresql;user=...;dbname=...;password=...;"
DATABASE_CHARSET=UTF8
DATABASE_COLLATE=pl_PL.UTF8
DATABASE_DRIVER=pdo_pgsql
DATABASE_VERSION=10.10

IPv4 example:

DATABASE_URL=
POSTGRES_DB_PDO_ROLE=... (in most cases same as username)
POSTGRES_DB_PDO_DSN="pgsql:host=my_db_host;user=...;dbname=...;password=...;"
DATABASE_CHARSET=UTF8
DATABASE_COLLATE=pl_PL.UTF8
DATABASE_DRIVER=pdo_pgsql
DATABASE_VERSION=10.10

12 Chapter 5. Configuration reference

CHAPTER 6

Docker, releases and versioning

Images are hosted on both hub.docker.com and quay.io

The versions are created from tags, when a code is considered stable, then it is tagged.

Please see https://semver.org/ for how we version the application.

quay.io/riotkit
quay.io/riotkit/file-repository
quay.io/riotkit/bahub
quay.io/riotkit/file-repository-sentry

https://hub.docker.com/r/wolnosciowiec/file-repository
wolnosciowiec/file-repository

13

https://semver.org/

File Repository Documentation, Release 2

14 Chapter 6. Docker, releases and versioning

CHAPTER 7

Using postman to manage the application

Postman is an API client that allowing to send HTTP requests. You can use it, when you do not have any other
graphical application, that could be acting as a client of the File Repository.

At first you can create your own collection, then you can import our test-collection to have some examples.

15

File Repository Documentation, Release 2

16 Chapter 7. Using postman to manage the application

File Repository Documentation, Release 2

17

File Repository Documentation, Release 2

18 Chapter 7. Using postman to manage the application

CHAPTER 8

Authorization

File Repository is an API application, so there is no user account identified by login and password, there are ACCESS
TOKENS.

An access token is identified by long UUIDv4, and has assigned information about the access, such as:

• List of actions that are allowed (eg. file uploads could be allowed, but browsing the list of files not)

• Allowed tags that could be used when uploading (optional)

• Allowed file types (mime types) when uploading (optional)

• List of allowed IP addresses that could use this token (optional)

• List of allowed User-Agent strings (optional)

• Maximum allowed file size (optional)

• Token expiration date

To authorize in the API you need to provide the token in one of those methods: - Using a query parameter “_token”
eg. /some/url?_token=123 - Using a HTTP header “X-Auth-Token”

8.1 Creating a token

Check out the Permissions list for a complete list of permissions.

19

File Repository Documentation, Release 2

Parameters
name description
roles A list of roles allowed for user. See permissions/configuration reference page
data.tags List of allowed tags to use in upload endpoints (OPTIONAL)
data.allowedMimeTypes List of allowed mime types (OPTIONAL)
data.maxAllowedFileSize Number of bytes of maximum file size (OPTIONAL)
data.allowedUserAgents List of allowed User-Agent header values (ex. to restrict token to single browser) (OP-

TIONAL)
data.allowedIpAddresses List of allowed IP addresses (ex. to restrict one-time-token to single person/session)

(OPTIONAL)
expires Expiration date, or “auto”, “automatic”, “never”. Empty value means same as “auto”

POST /auth/token/generate?_token=your-admin-token-there

{
"roles": ["collections.create_new", "collections.add_tokens_to_allowed_collections

→˓"],
"data": {

"tags": [],
"allowedMimeTypes": ["image/jpeg", "image/png", "image/gif"],
"maxAllowedFileSize": 14579,
"allowedUserAgents": ["Mozilla/5.0 (X11; Linux x86_64; rv:57.0) Gecko/

→˓20100101 Firefox/57.0"],
"allowedIpAddresses": ["192.168.1.10"]

},
"expires": "2020-05-05 08:00:00"

}

Example response:

{
"tokenId": "D0D12FFF-DD04-4514-8E5D-D51542DEBCFA",
"expires": "2020-05-05 08:00:00"

}

Required roles:

• security.generate_tokens

8.2 Looking up a token

GET /auth/token/D0D12FFF-DD04-4514-8E5D-D51542DEBCFA?_token=your-admin-token-there

Example response:

{
"tokenId": "34A77B0D-8E6F-40EF-8E70-C73A3F2B3AF8",
"expires": "2019-01-06 09:20:16",
"roles": [

"upload.images"
],
"tags": [

"user_uploads.u123",

(continues on next page)

20 Chapter 8. Authorization

File Repository Documentation, Release 2

(continued from previous page)

"user_uploads"
],
"mimes": [

"image/jpeg",
"image/png",
"image/gif"

],
"max_file_size": 14579

}

Required roles:

• security.authentication_lookup

8.3 Revoking a token

DELETE /auth/token/D0D12FFF-DD04-4514-8E5D-D51542DEBCFA?_token=your-admin-token-there

Example response:

{
"tokenId": "D0D12FFF-DD04-4514-8E5D-D51542DEBCFA",
"expires": "2019-01-06 09:20:16"

}

Required roles:

• security.revoke_tokens

8.3. Revoking a token 21

File Repository Documentation, Release 2

22 Chapter 8. Authorization

CHAPTER 9

Files storage

The file storage is like a bag of files, there are no directories, it’s more like an object storage. When you put some file
it is written down on the disk, and it’s metadata is stored in the database.

Files could be tagged with some names, it’s useful if the repository is shared between multiple usage types. The listing
endpoint can search by tag, phrase, mime type - the external application could use listing endpoint to show a gallery
of pictures for example, uploaded documents, attachments lists.

In short words the File Storage is a specialized group of functionality that allows to manage files, group them, upload
new, delete and list them.

9.1 Security

9.1.1 Access

File can be PUBLIC or PRIVATE, the public attribute of input data that is sent together with file means the file will
not be listed by listing endpoint (unless the token is not an administrative token).

Password protection could be used to protect from downloading the file content by not authorized person, and also it
will anonymize the file in public listing if the person who lists the files will not know the password.

9.1.2 Uploading restrictions

When you give user a temporary token to allow to upload eg. avatar, then you may require that the file will not have a
password, and possibly enforce to select some tags as mandatory.

Extra roles, that can restrict the token
name description
upload.enforce_no_password Enforce files uploaded with this token to not have a password
up-
load.enforce_tags_selected_in_token

Regardless of tags that user could choose, the tags from token will be copied
into each uploaded file

23

File Repository Documentation, Release 2

9.2 Uploading

Files could be uploaded in three ways - as RAW BODY, as POST form field and as URL from existing resource in the
internet.

Common parameters for all endpoints
name description
tags List of tags where the file will be listed
public Should be listed/searched? (true/false)
password Optionally allows to protect access to the file and it’s metadata
encoding Allows to upload encoded file, example values: base64, ‘’ (helpful for frontend implemen-

tation)

9.2.1 From external resource by URL

Endpoint specific parameters
name description
fileUrl URL address to the file from the internet

POST /repository/image/add-by-url?_token=some-token-there

{
"fileUrl": "http://zsp.net.pl/files/barroness_logo.png",
"tags": [],
"public": true

}

9.2.2 In RAW BODY

Endpoint specific parameters
name description
filename Filename that will be used to access the file later

POST /repository/file/upload?_token=some-token-here&fileName=heart.png

< some file content there instead of this text >

Notes:

• Filename will have added automatically the content hash code to make the record associated with file content
(eg. heart.png -> 5Dgds3dqheart.png)

• Filename is unique, same as file

• If file already exists under other name, then it’s name will be returned (deduplication mechanism)

24 Chapter 9. Files storage

File Repository Documentation, Release 2

9.2.3 In a POST form field

Endpoint specific parameters
name description
filename Filename that will be used to access the file later

POST /repository/file/upload?_token=some-token-here&fileName=heart.png

Content-Type: multipart/form-data; boundary=----WebKitFormBoundary7MA4YWxkTrZu0gW

------WebKitFormBoundary7MA4YWxkTrZu0gW
Content-Disposition: form-data; name="file"; filename=""
Content-Type: image/png

------WebKitFormBoundary7MA4YWxkTrZu0gW--

... file content some where ...

9.3 Downloading

When you upload your file you will always get an URL address in the JSON response, but the download endpoints
has more to offer than it looks on first view. Let’s explain additional things you can do with the download endpoint.

Features:

• Bytes range support, files could be downloaded partially, videos can be rewinded while streamed

• Big files support

• Content type is sent, so the browser knows the file size and can show the progress bar

• Optional password protection

Common parameters for all endpoints
name description
password Password to access the file, optionally if the file is password protected

9.3.1 Regular downloading

It’s very simple.

GET /repository/file/d3beb8a9f0some-file-name-there.txt?password=optional-password-
→˓there-if-any

9.3.2 Downloading using alias defined in ids_mapping.yaml

Aliases are allowing to access files by other names, they can be defined in ./config/ids_mapping.yaml file. It’s very
helpful feature when you migrate from other storage application to File Repository.

Example ids_mapping.yaml file:

9.3. Downloading 25

File Repository Documentation, Release 2

"oh-my-alias-there": "d3beb8a9f0some-file-name-there.txt"

Example request:

GET /repository/file/oh-my-alias-there

9.3.3 Downloading using hotlink protection

Hotlink protection is allowing to generate personalized download urls by combining eg. user’s IP address, some salt,
file name and timestamp. Such link cannot be shared with other users.

Note: Hotlink protection endpoint also supports aliasing.

Example request:

GET /stream/531ce1f1d5d242cd5005b3758d3b5435/2219788800/d3beb8a9f0some-file-name-
→˓there.txt

The format of the URL is defined in the environment variables:

ANTI_HOTLINK_PROTECTION_ENABLED=true
ANTI_HOTLINK_RESTRICT_REGULAR_URLS=false
ANTI_HOTLINK_URL=/stream/{accessToken}/{expirationTime}/{fileId}
ANTI_HOTLINK_CRYPTO=md5
ANTI_HOTLINK_SECRET_METHOD="\$http_x_expiration_time\$http_test_header MY-AWESOME-
→˓SUFFIX"

It means you can change it, so the URL will be different. {expirationTime} is optional, but very helpful.

Short explanation:

The {accessToken} is generated by hashing with eg. md5 the filled-up
ANTI_HOTLINK_SECRET_METHOD.

Example: Given ANTI_HOTLINK_SECRET_METHOD is “$http_x_expiration_time$http_test_header
MY-AWESOME-SUFFIX” We send a request with {expirationTime} = 123 and a header Test-Header =
HELLO

So, the secret would be “123HELLO MY-AWESOME-SUFFIX”, now we have to hash using selected
crypto - md5. md5(23HELLO MY-AWESOME-SUFFIX) = 531ce1f1d5d242cd5005b3758d3b5435

It means that we have URL: /stream/531ce1f1d5d242cd5005b3758d3b5435/123/d3beb8a9f0some-file-
name-there.txt

9.4 Aliasing filenames (migrating existing files to File Repository)

Filename in File Repository is created based on file contents hash + name submitted by user. To allow easier migra-
tion of your existing files, the File Repository allows to create aliases to files you upload.

9.4.1 Scenario

Let’s assume that you have a file named “Accidential-Anarchist.mp4”, and your website shows a player that points to
https://static.iwa-ait.org/Accidential-Anarchist.mp4 Now you want to migrate your storage to use File Repository, so
the File Repository will store and serve the files with help of your webserver.

26 Chapter 9. Files storage

https://static.iwa-ait.org/Accidential-Anarchist.mp4

File Repository Documentation, Release 2

To keep old links still working you need to:

• Set up a URL rewrite in your webserver (eg. NGINX or Apache 2) to rewrite the FORMAT OF THE URL,
example: /education/movies/watch?v=. . . to /repository/file/. . .

• You have a file “Accidential-Anarchist.mp4”, after uploading to File Repository it will have different name
eg. “59dce00bcAccidential-Anarchist.mp4”, you can create an alias that will point from “Accidential-
Anarchist.mp4” to “59dce00bcAccidential-Anarchist.mp4”

9.4.2 Practice, defining aliases

To start you need to create a file config/ids_mapping.yaml, where you will list all of the aliases in YAML syntax.

Example:

Notice: You need to restart the application (or execute ./bin/console cache:clear –env=prod) after applying changes
to this file

9.5 Hotlink protection - personalizing URLs for your visitors

If for any reason you need to secure your content from being distributed outside of your website, then you need a
hotlink protection. Hotlink protection gives your website a control over who can see the video, image or any other
resource that is kept on File Repository.

9.5.1 Preparing your website and File Repository configuration

A website that is displaying eg. a video player that would play a video from File Repository need to point to a
personalized URL address especially generated for your page visitor.

At first let’s look at the URL format, you need to define a URL format that will point to protected files. Below there
are multiple examples, you can configure the URL however you want, this you need to adjust in your .env file or in
environment variables in Docker container.

example 1
ANTI_HOTLINK_URL=/stream/{accessToken}/{expirationTime}/{fileId}

example 2
ANTI_HOTLINK_URL=/video/{accessToken}/{expirationTime}/{fileId}

example 3
ANTI_HOTLINK_URL=/watch/{fileId},{accessToken},{expirationTime}

example 4
ANTI_HOTLINK_URL=/watch/{accessToken}/{fileId}

So, let’s take a look at the most interesting part - the access token generation.

Each visitor on your page needs to get a unique access token that will allow to see the file content only for him/her.
To generate such access token we need to DEFINE A COMMON FORMAT that your application will use and
File Repository will understand.

ANTI_HOTLINK_SECRET_METHOD="\$http_x_expiration_time\$http_x_real_uri\$http_x_remote_
→˓addr MY-AWESOME-SUFFIX"

Following example is combining most important variables, why?

9.5. Hotlink protection - personalizing URLs for your visitors 27

File Repository Documentation, Release 2

• $http_x_real_uri - to restrict this token only to single file (this header may be required to be set on NG-
INX/Apache level)

• $http_x_remote_addr - to restrict access to single IP address

• MY-AWESOME-SUFFIX - this one definitely you should change to a SECRET you only know. It will prevent
anybody from generating a token

• $http_x_expiration_time - optionally validate the passed input data in the url

Generally the rule with the variables is simple as in NGINX, but a little bit more extended to give better possibilities.

Variable templates
name description
$http_xxx In place of xxx put your normalized header name eg. Content-Type would be content_type
$server_xxx Everything what is in PHP’s $_SERVER, including environment variables
$query_xxx Everything what is in query string (query string in URL is everything after question mark)

9.5.2 Practical example of generating access token on your website

Assuming that you have following configuration:

ANTI_HOTLINK_PROTECTION_ENABLED=true
ANTI_HOTLINK_RESTRICT_REGULAR_URLS=false
ANTI_HOTLINK_CRYPTO=md5
ANTI_HOTLINK_SECRET_METHOD="\$http_x_expiration_time\$filename\$http_remote_addr MY-
→˓AWESOME-SUFFIX"
ANTI_HOTLINK_URL=/stream/{accessToken}/{expirationTime}/{fileId}

That would be an example code that could generate URL addresses in your application:

<?php
$fileId = 'Accidential-Anarchist.mp4';
$expirationTime = time() + (3600 * 4); // +4 hours
$rawToken = $expirationTime . $fileId . ($_SERVER['REMOTE_ADDR'] ?? '') . ' MY-
→˓AWESOME-SUFFIX';

$hash = hash('md5', $rawToken);
echo 'URL: /stream/' . $hash . '/' . $expirationTime . '/' . $fileId;

9.6 Listing and searching

Each file can be found by using a search endpoint. Password protected files are censored, if the correct password was
not entered in the search field.

Note: Files can be named and tagged, marked as public/private, password protected.

28 Chapter 9. Files storage

File Repository Documentation, Release 2

Parameters
name description
page Page number
limit Limit results on single page
password Password for password-protected files
searchQuery Search phrase, a word, multiple words to be searched for in the file name
tags List of tags to filter by (array)
mimes List of mimes to filter by (array)

Example request:

GET /repository?_token=your-auth-token&page=1&limit=20

9.6. Listing and searching 29

File Repository Documentation, Release 2

30 Chapter 9. Files storage

CHAPTER 10

Backup

Backup collections allows to store multiple versions of the same file.

Each submitted version has automatically incremented version number by one.

Example scenario with strategy “delete_oldest_when_adding_new”:

Given we have DATABASE dumps of iwa-ait.org website
And our backup collection can contain only 3 versions (maximum)

When we upload a sql dump file THEN IT'S a v1 version
When we upload a next sql dump file THEN IT'S a v2 version
When we upload a next sql dump file THEN IT'S a v3 version

Then we have v1, v2, v3

When we upload a sql dump file THEN IT'S a v4 version
But v1 gets deleted because collection is full

Then we have v2, v3, v4

From security point of view there is a possibility to attach multiple tokens with different access rights to view and/or
manage the collection.

10.1 Getting started

The workflow is following:

1. You need to have an access token that allows you to create collections

2. Create a collection, remember it’s ID (we will call it collection_id later)

3. (Optional) Allow some other token or tokens to access the collection (all actions or only some selected actions
on the collection)

4. Store backups under a collection of given collection_id

31

File Repository Documentation, Release 2

5. List and download stored backups when you need

10.1.1 Versioning

Each uploaded version is added as last and have a version number incremented by one, and a ID string generated.

For example: There is a v1 version, we upload a new version and a new version is getting a number v2

Later any version could be accessed by generated ID string or version number (in combination with the collection
ID)

10.1.2 Collection limits

Each collection could either be a infinite collection or a finite collection.

Below are listed limits for finite collections:

Limits
limit description
maxBackupsCount Maximum count of versions that could be stored
maxOneVersionSize Maximum disk space that could be allocated for single version
maxCollectionSize Maximum disk space for whole collection (summary of all files)

10.1.3 Permissions

There could be multiple tokens with different permissions assigned to the collection.

Example use case: Generated “Guest token” with download-only permissions could be safe to share between ad-
ministrators. The “Upload token” could be used by the server to automatically upload new versions without
permissions to delete other versions and without need to modify collections limits. “Management token” with
all of the permissions for managing a collection.

10.2 Managing collections

To start creating backups you need a collection that will handle ONE FILE. The file may be a zipped directory, a text
file, SQL dump or anything you need.

10.2.1 Collection creation

To add any backup you need a collection at first. Collection is a container that keeps multiple versions of same file
(for example your database dump from each day). Collection additionally can define limits on length, size, type of
uploaded file, and tokens which have access to it at all.

Example request:

POST {{appUrl}}/repository/collection?_token=test-token-full-permissions

{
"maxBackupsCount": 5,
"maxOneVersionSize": 0,

(continues on next page)

32 Chapter 10. Backup

File Repository Documentation, Release 2

(continued from previous page)

"maxCollectionSize": "250MB",
"strategy": "delete_oldest_when_adding_new",
"description": "iwa-ait.org database backup",
"filename": "iwa-ait-org.sql.gz"

}

In the response you will receive a collection ID that will be required for editing collection information, assigning
tokens and uploading files.

There are two strategies. delete_oldest_when_adding_new is automatically deleting older backup versions when a
maxBackupsCount is reached and a new backup is submitted. alert_when_backup_limit_reached will raise an
error when submitting a new version to already full backup collection.

Notes:

• Put zero values to disable the limit

• Supports “simulate=true” parameter that allows to send a request that will not create any data, but only validate
submitted data

• You’r token will be automatically added as token allowed to access and modify the collection

Required permissions:

• collections.create_new

Optional permissions:

• collections.allow_infinite_limits (allows to create an infinite collection, it means that you can eg. upload as
much files as you like to, and/or the disk space is unlimited)

10.2.2 Collection editing

PUT {{appUrl}}/repository/collection?_token=test-token-full-permissions

{
"collection": "SOME-COLLECTION-ID-YOU-RECEIVED-WHEN-CREATING-THE-COLLECTION",
"maxBackupsCount": 5,
"maxOneVersionSize": 0,
"maxCollectionSize": "250MB",
"strategy": "delete_oldest_when_adding_new",
"description": "iwa-ait.org database backup (modified)",
"filename": "iwa-ait-org.sql.gz"

}

Notes:

• The collection size cannot be lower than it is actual in the storage (sum of existing files in the collection)

• You need to have global permissions for managing any collection or to have token listed as allowed in collec-
tion you want to edit

Required permissions:

• collections.modify_details_of_allowed_collections

Optional permissions:

• collections.allow_infinite_limits (allows to edit an infinite collection, it means that you can eg. upload as much
files as you like to, and/or the disk space is unlimited)

10.2. Managing collections 33

File Repository Documentation, Release 2

• collections.modify_any_collection_regardless_if_token_was_allowed_by_collection (gives a possibility to edit
a collection even if token is not attached to it)

10.2.3 Deleting

To delete a collection you need to at first make sure, that there are no backup versions attached to it. Before deleting a
collection you need to manually delete all backups. It’s for safety reasons.

DELETE {{appUrl}}/repository/collection/SOME-COLLECTION-ID?_token=test-token-full-
→˓permissions

Required permissions:

• collections.delete_allowed_collections

Optional permissions:

• collections.modify_any_collection_regardless_if_token_was_allowed_by_collection (gives a possibility to edit
a collection even if token is not attached to it)

10.2.4 Fetching collection information

You can fetch information about collection limits, strategy, description and more to be able to edit it using other
endpoints.

GET {{appUrl}}/repository/collection/SOME-COLLECTION-ID?_token=test-token-full-
→˓permissions

Notes:

• You need to have global permissions for managing any collection or to have token listed as allowed in collec-
tion you want to fetch

Required permissions:

• (just the token added as allowed for given collection)

Optional permissions:

• collections.modify_any_collection_regardless_if_token_was_allowed_by_collection (gives a possibility to edit
a collection even if token is not attached to it)

10.3 Authorization

Multiple tokens with different permissions could be assigned to the single collection. You may create a token for
uploading backups, deleting backups and for managing collection limits separately.

10.3.1 Assigning a token to the collection

POST /repository/collection/{{collection_id}}/token?_token={{collection_management_
→˓token}}

{

(continues on next page)

34 Chapter 10. Backup

File Repository Documentation, Release 2

(continued from previous page)

"token": "SO-ME-TO-KEN-TO-ADD"
}

Legend:

• {{collection_management_token}} is your token that has access rights to fully manage collection

• {{collection_id}} is an identifier that you will receive on collection creation (see collection creation endpoint)

Required permissions:

• collections.manage_tokens_in_allowed_collections

10.3.2 Revoking access to the collection for given token

DELETE /repository/collection/{{collection_id}}/token/{{token_id}}?_token={
→˓{collection_management_token}}

Legend:

• {{token_id}} identifier of a token that we want to disallow access to the collection

• {{collection_management_token}} is your token that has access rights to fully manage collection

• {{collection_id}} is an identifier that you will receive on collection creation (see collection creation endpoint)

Required permissions:

• collections.manage_tokens_in_allowed_collections

10.4 Backups: Upload, deletion and versioning

Assuming that you have already a collection and an access token, then we can start uploading files that will be ver-
sioned and stored under selected collection.

10.4.1 Uploading a new version to the collection

You need to submit file content in the HTTP request body. The rest of the parameters such as token you need to
pass as GET parameters.

POST /repository/collection/{{collection_id}}/backup?_token={{token_that_allows_to_
→˓upload_to_allowed_collections}}

.... FILE CONTENT THERE

Pretty simple, huh? As the result you will get the version number and the filename, something like this:

{
"status": "OK",
"error_code": null,
"exit_code": 200,
"field": null,
"errors": null,
"version": {

(continues on next page)

10.4. Backups: Upload, deletion and versioning 35

File Repository Documentation, Release 2

(continued from previous page)

"id": "69283AC3-559C-43FE-BFCC-ECB932BD57ED",
"version": 1,
"creation_date": {

"date": "2019-01-03 11:40:14.669724",
"timezone_type": 3,
"timezone": "UTC"

},
"file": {

"id": 175,
"filename": "ef61338f0dsolidarity-with-postal-workers-article-v1"

}
},
"collection": {

"id": "430F66C3-E4D9-46AA-9E58-D97B2788BEF7",
"max_backups_count": 2,
"max_one_backup_version_size": 1000000,
"max_collection_size": 5000000,
"created_at": {

"date": "2019-01-03 11:40:11.000000",
"timezone_type": 3,
"timezone": "UTC"

},
"strategy": "delete_oldest_when_adding_new",
"description": "Title: Solidarity with Postal Workers, Against State

→˓Repression!",
"filename": "solidarity-with-postal-workers-article"

}
}

Required permissions:

• collections.upload_to_allowed_collections

10.4.2 Deleting a version

A simple DELETE type request will delete a version from collection and from storage.

DELETE /repository/collection/{{collection_id}}/backup/BACKUP-ID?_token={{token}}

Example response:

{
"status": "OK, object deleted",
"error_code": 200,
"exit_code": 200

}

Parameters
type name description
bool simulate Simulate the request, do not delete in real. Could be used as pre-validation
string _token Standard access token parameter (optional, header can be used instead)

Required permissions:

• collections.delete_versions_for_allowed_collections

36 Chapter 10. Backup

File Repository Documentation, Release 2

10.4.3 Getting the list of uploaded versions

To list all existing backups under a collection you need just a collection id, and the permissions.

GET /repository/collection/{{collection_id}}/backup?_token={{token}}

Example response:

{
"status": "OK",
"error_code": null,
"exit_code": 200,
"versions": {

"3": {
"details": {

"id": "A9DAB651-3A6F-440D-8C6D-477F1F796F13",
"version": 3,
"creation_date": {

"date": "2019-01-03 11:40:24.000000",
"timezone_type": 3,
"timezone": "UTC"

},
"file": {

"id": 178,
"filename": "343b39f56csolidarity-with-postal-workers-article-v3"

}
},
"url": "https://my-anarchist-initiative/public/download/

→˓343b39f56csolidarity-with-postal-workers-article-v3"
},
"4": {

"details": {
"id": "95F12DAD-3F03-49B0-BAEA-C5AC3E8E2A30",
"version": 4,
"creation_date": {

"date": "2019-01-03 11:47:34.000000",
"timezone_type": 3,
"timezone": "UTC"

},
"file": {

"id": 179,
"filename": "41ea3dcca9solidarity-with-postal-workers-article-v4"

}
},
"url": "https://my-anarchist-initiative/public/download/

→˓41ea3dcca9solidarity-with-postal-workers-article-v4"
}

}
}

Required permissions:

• collections.list_versions_for_allowed_collections

10.4.4 Downloading uploaded versions

Given we upload eg. 53 versions of a SQL dump, one each month and we want to download latest version, then we
need to call the fetch endpoint with the “latest” keyword as the identifier.

10.4. Backups: Upload, deletion and versioning 37

File Repository Documentation, Release 2

GET /repository/collection/{{collection_id}}/backup/latest?password={{collection_
→˓password_to_access_file}}&_token={{token}}

If there is a need to download an older version of the file, a version number should be used, eg. v49

GET /repository/collection/{{collection_id}}/backup/v49?password={{collection_
→˓password_to_access_file}}&_token={{token}}

There is also a possibility to download a last copy from the bottom, the oldest version available using keyword first.

GET /repository/collection/{{collection_id}}/backup/first?password={{collection_
→˓password_to_access_file}}&_token={{token}}

In case we have an ID of the version, then it could be inserted directly replacing the alias keyword.

GET /repository/collection/{{collection_id}}/backup/69283AC3-559C-43FE-BFCC-
→˓ECB932BD57ED?password=thats-a-secret&_token={{token}}

Parameters
type name description
bool redirect Allows to disable HTTP redirection and return JSON with the url address instead
string password Password required for requested FILE (please read about passwords in notes section)
string _token Standard access token parameter (optional, header can be used instead)

Required permissions:

• collections.list_versions_for_allowed_collections

• (knowing the password for the collection file)

Notes:

• The password for the file is inherited from collection, but it may be different in case when the collection would
have changed the password, old files would not be updated!

10.5 Data replication

File Repository does not support replication itself. The replication could be enabled on storage backend level.

You may want to check Minio.io that has a possibility to configure multiple nodes in primary-replica model.

10.6 Managing collections from shell

To allow automating things there are shell commands, those do not require authorization and have the same parameters
as API endpoints.

38 Chapter 10. Backup

https://minio.io/

File Repository Documentation, Release 2

10.6.1 Creating collections

The command will return just a collection id on success. On failure a json is returned.

Example success output:

./bin/console backup:create-collection -d "Some test collection" -f "backup.tar.gz" -
→˓b 4 -o 3GB -c 15GB
48449389-E267-497E-A6F4-EAC91C063708

Example failure output:

./bin/console backup:create-collection -d "Some test collection" -f "backup.tar.gz" -
→˓b 4 -o 3GB -c 1GB
{

"status": "Logic validation error",
"error_code": 4003,
"http_code": 400,
"errors": {

"maxCollectionSize": "max_collection_size_is_lower_than_single_element_size"
},
"collection": null,
"context": []

}

10.6. Managing collections from shell 39

File Repository Documentation, Release 2

40 Chapter 10. Backup

CHAPTER 11

MinimumUI

Although that File Repository is an API project, it has a few HTML endpoints which are allowing to upload files.
MinimumUI idea is to allow to use File Repository as a fully standalone microservice, with easy to use embeddable
upload forms on any website.

11.1 Quick start in steps

1. Your application needs to have a possibility to create tokens in File Repository on backend side (no one should
see your administrative token).

2. For each user you need to generate a temporary token with minimal permissions (eg. upload only, with restric-
tions for password, mime types, tags etc.)

3. On your website you need to redirect user to the file repository upload form (MinimumUI endpoint) with speci-
fying the “back” parameter in query string, so the user will go back on your website again and pass the uploaded
file URL

4. You need to validate the URL from your user, if it comes eg. from proper domain where File Repository runs

11.2 Endpoints

Following endpoints are just displaying a static HTML page, that acts as a client to the API. No any endpoint is
implementing any additional access rights, if the user does not have access to perform some action, then the page
would display, but the backend will respond with an error.

If you need to restrict the file size, mime type, allowed tags or others, then you need to specify it in the access token
that will be used in the UI.

41

File Repository Documentation, Release 2

Roles used by the endpoints
name description
upload.enforce_no_password Enforce the file to be uploaded without a password
upload.enforce_tags_selected_in_token Tag uploaded file with tags specified in the token, regardless of user

choice
upload.images Upload images

11.2.1 Image Upload

The image upload endpoint allows to upload whole file as is, or with cropping it. Cropper supports an aspect ratio,
that could be specified in the query string.

Extra parameters in query string
name description
ratio Aspect ratio for the images eg. 16/9 is 1.77, so it would be ?ratio=1.77
back URL address to redirect the user on success. FILE_REPOSITORY_URL phrase will be replaced

with the uploaded file URL
_token Access token

In the browser access URL: /minimum.ui/upload/image?_token=TOKEN-THERE

42 Chapter 11. MinimumUI

File Repository Documentation, Release 2

11.2. Endpoints 43

File Repository Documentation, Release 2

11.2.2 File upload

File upload offers a multiple file upload, with drag & drop and fancy animations.

In the browser access URL: /minimum.ui/upload/file?_token=TOKEN-THERE

44 Chapter 11. MinimumUI

File Repository Documentation, Release 2

11.2. Endpoints 45

File Repository Documentation, Release 2

46 Chapter 11. MinimumUI

File Repository Documentation, Release 2

11.2. Endpoints 47

File Repository Documentation, Release 2

11.2.3 Video watching

File Repository is able to serve video files with possibility to rewind them, that’s the responsibility of the download
endpoint. MinimumUI exposes additional endpoint with a HTML5 <video> tag, so the video could be embedded
easily on other website.

In the browser access URL: /minimum.ui/watch/video/some-file-name.mp4

48 Chapter 11. MinimumUI

CHAPTER 12

Bahub API client

Bahub is an automation tool for uploading and restoring backups. Works in shell, can work as a docker container
in the same network with scheduled automatic backups of other containers, or can work as an UNIX daemon on the
server without containerization.

12.1 Configuration reference

There are 3 sections:

• Access: Describes authorization details, name it eg. server1 and put url and token

• Encryption: Encryption type and password (if any) to encrypt your files stored on File Repository

• Backups: Describes where is your data, how to access it and under which COLLECTION to send it to File
Repository

• Recoveries: Recovery plans. A policy + list of “backups” to restore within a single command

Example scenario:

49

File Repository Documentation, Release 2

1. You have a server under https://backups.iwa-ait.org and token “XXX-YYY-ZZZ-123”, you name it
“ait_backups” under access section

2. You want to have encrypted backups using AES 256 CBC, then you add “ait_secret” under encryption with
passphrase “something-secret” and type “aes-256-cbc”

3. Next you want to define where is the data, in our example it’s in a docker container under /var/lib/mysql and
we want to send this data to collection “123-456-789-000”. You should reference “ait_backups” access and
“ait_secret” as the encryption method for your backup there.

12.1.1 Environment variables

If you want to use environment variables, use bash-like syntax ${SOME_ENV_NAME}.

NOTE: In case you will not set a variable in the shell, then application will not start, it will throw a configuration
error.

12.1.2 Application configuration

Notice: Below example uses environment variables eg. ${DB_HOST}, you may want to replace them with values
like localhost or others

12.2 Basic usage

Bahub is offering basic operations required to automate backup sending and receiving, not managing the server.

12.2.1 Sending a backup

$ bahub --config ~/.bahub.yaml backup some_local_dir
{'version': 72, 'file_id': 'E9D7103D-1789-475E-A3EE-9CF18F51ACA4', 'file_name':
→˓'2b2e269541backup.tar-v72.gz'}

12.2.2 Listing stored backups

$ bahub --config ~/.bahub.yaml list some_local_dir
{

"v71": {
"created": "2019-02-10 14:27:52.000000",
"id": "1684C60D-28B0-4818-A3EC-1F0C47981592"

},
"v72": {

"created": "2019-02-11 07:54:52.000000",
"id": "E9D7103D-1789-475E-A3EE-9CF18F51ACA4"

}
}

50 Chapter 12. Bahub API client

https://backups.iwa-ait.org

File Repository Documentation, Release 2

12.2.3 Restoring a backup

Restoring latest version:

$ bahub --config ~/.bahub.yaml restore some_local_dir latest
{"status": "OK"}

Restoring version by number:

$ bahub --config ~/.bahub.yaml restore some_local_dir v71
{"status": "OK"}

Restoring version by id:

$ bahub --config ~/.bahub.yaml restore some_local_dir 1684C60D-28B0-4818-A3EC-
→˓1F0C47981592
{"status": "OK"}

12.2.4 Recovery from disaster

In case you need to quickly recover whole server/environment from backup - there is a RECOVERY PLAN. A
recovery plan is:

• List of backups to restore (names from section “backups”)

• Policy of recovery (eg. recover everything, or stop on failure)

#
Recovery plans
Restores multiple backups in order, using single command
#
Possible values:
policy:
- restore-whats-possible: Ignore things that cannot be restored, restore what
→˓is posible
- stop-on-first-error: Restore until first error, then stay as it is
#
recoveries:

default:
policy: restore-whats-possible
definitions: all

plan_2:
policy: stop-on-first-error
definitions:

- local_command_output

$ bahub --config ~/.bahub.yaml recover default

12.2.5 Making a snapshot of multiple services at once

Snapshot works exactly in the same way as recovery from diaster, but it’s inverted. Instead of downloading a copy,
it is actually uploading.

NOTICE: Be very careful, as this is a single command to backup everything, remember about the backups
rotation

12.2. Basic usage 51

File Repository Documentation, Release 2

$ bahub --config ~/.bahub.yaml snapshot default

[2019-04-01 07:17:42,818][bahub][INFO]: Performing snapshot
[2019-04-01 07:17:42,819][bahub][INFO]: Performing a snapshot using "default" plan
[2019-04-01 07:17:42,819][bahub][DEBUG]: shell(sudo docker ps | grep "test_1")
[2019-04-01 07:17:42,870][bahub][DEBUG]: shell(set -o pipefail; sudo docker exec
→˓test_1 /bin/sh -c "[-e /etc] || echo does-not-exist"; exit $?)
[2019-04-01 07:17:42,967][bahub][DEBUG]: shell(set -o pipefail; sudo docker exec
→˓test_1 /bin/sh -c "tar -czf - \"/etc\" "| openssl enc -aes-128-cbc -pass
→˓pass:Q***W; exit $?)
[2019-04-01 07:17:43,052][bahub][DEBUG]: shell(set -o pipefail; sudo docker exec
→˓test_1 /bin/sh -c "tar -czf - \"/etc\" "| openssl enc -aes-128-cbc -pass
→˓pass:Q***W; exit $?)
[2019-04-01 07:17:45,672][bahub][DEBUG]: Request: https://api.backups.riotkit.org/
→˓repository/collection/d*************************************9/backup?_
→˓token=a***********************************6
[2019-04-01 07:17:45,672][bahub][DEBUG]: response({"status":"OK","error_code":null,
→˓"exit_code":200,"field":null,"errors":null,"version":{"id":"***************",
→˓"version":1,"creation_date":{"date":"2019-04-01 05:17:45.492490","timezone_type":3,
→˓"timezone":"UTC"},"file":{"id":110,"filename":"cd06f449fdtest-v2"}},"collection":{
→˓"id":"d*************************************9","max_backups_count":1,"max_one_
→˓backup_version_size":2000000000,"max_collection_size":8000000000,"created_at":{"date
→˓":"2019-03-24 21:29:14.000000","timezone_type":3,"timezone":"UTC"},"strategy":
→˓"delete_oldest_when_adding_new","description":"TEST","filename":"test"}})
[2019-04-01 07:17:45,673][bahub][INFO]: Finishing the process

{
"failure": [],
"success": [

"test"
]

}

52 Chapter 12. Bahub API client

File Repository Documentation, Release 2

12.3 Monitoring errors with Sentry

Bahub uses shell commands to take some data, pack it and encrypt. What if any of those commands will fail? What if
there are no enough permissions? What if the directory does not exist? All of those are good reasons to have set up a
monitoring.

Almost each application failure can be catched and sent to analysis. Don’t worry about the privacy, you can use your
own Sentry instance.

To enable the monitoring you need to have a ready-to-use Sentry instance/account and a error_handler configured in
Bahub.

error_handlers:
remote_sentry: # name it as you want

type: sentry
url: "https://some-url"

12.3. Monitoring errors with Sentry 53

File Repository Documentation, Release 2

12.4 Notifications

Each event such as upload success, restore success, or a failure can emit a notification.

notifiers:
mattermost: # name it as you want

type: slack # compatible with Slack and Mattermost
url: "https://xxxxx"

12.5 Setup

Bahub can be running as a separate container attached to docker containers network or manually as a regular process.
The recommended way is to use a docker container, which provides a working job scheduling, installed dependencies
and preconfigured most of the things.

12.6 Using docker container

There exists a bahub tag on the docker hub container, wolnosciowiec/file-repository:bahub You can find an example
in “examples/client” directory in the repository.

docker-compose.yml

version: "2"
services:

#
Our container that is running all the time, can run scheduled backups and

→˓manually triggered backups
#
backup:

image: quay.io/riotkit/bahub:dev
volumes:

- "./cron:/cron:ro"
- "./config.yaml:/bahub.conf.yaml:ro"
- "/var/run/docker.sock:/var/run/docker.sock"

environment:
- BACKUPS_ENCRYPTION_PASSPHRASE=some-very-long-passphrase-good-to-have-

→˓there-64-characters-for-example
- BACKUPS_TOKEN=111111-2222-3333-4444-55555555555555

(continues on next page)

54 Chapter 12. Bahub API client

https://github.com/riotkit-org/file-repository/tree/master/examples

File Repository Documentation, Release 2

(continued from previous page)

- BACKUPS_REDIS_COLLECTION_ID=12345678-cccc-bbb-aaa-1232313213123
- COMPOSE_PROJECT_NAME=test_client

#
Test container for backup & restore
#
redis:

image: redis:3-alpine
volumes:

- ./redis:/data
command: "redis-server --appendonly yes"

/cron

schedule REDIS server backup on every Monday, 02:00 AM
0 2 * * MON bahub backup some_redis_storage

/bahub.conf.yaml (see: Configuration reference)

accesses:
some_server:

url: http://api.some-domain.org
token: "${BACKUPS_TOKEN}"

encryption:
my_aes:

passphrase: "${BACKUPS_ENCRYPTION_PASSPHRASE}"
method: "aes-128-cbc"

backups:
some_redis_storage:

type: docker_volumes
container: "${COMPOSE_PROJECT_NAME}_redis_1"
access: some_server
encryption: my_aes
collection_id: "${BACKUPS_REDIS_COLLECTION_ID}"
paths:

- "/data"

Note: It’s very important to specify the project name in docker-compose with “-p”, so it will have same value as
“COMPOSE_PROJECT_NAME”. You may want to add it to .env file and reuse in Makefile and in docker-compose.yml
for automation*

12.7 Using bare metal

Use Python’s PIP to install the package, and run it.

pip install bahub
bahub --help

12.7. Using bare metal 55

File Repository Documentation, Release 2

56 Chapter 12. Bahub API client

CHAPTER 13

Shell access

File Repository usage can be automated using shell commands. There are not so many commands, but basic usage
could be automated using scripts.

13.1 Introduction

Application is using Symfony Console, which is accessible in the main directory under ./bin/console In our prepared
docker compose environment you may use it differently.

Usage examples depending on how application is set up
type example
our docker env. make console OPTS=”backup:create-collection -d “Some test collection” -f “backup.tar.gz”

-b 4 -o 3GB -c 15GB”
docker standalone sudo docker exec -it some_container_name ./bin/console backup:create-collection -d “Some

test collection” -f “backup.tar.gz” -b 4 -o 3GB -c 15GB
standalone/manual ./bin/console backup:create-collection -d “Some test collection” -f “backup.tar.gz” -b 4 -o

3GB -c 15GB

If something is not working as expected, there is an error and you would like to inspect it, then please add a “-vvv”
switch to increase verbosity.

13.1.1 Managing authentication using console commands

Tokens can be easily generated without touching the cURL or browser or any API client. Just use the console.

Generating an unlimited administrative token

Probably first time when you set up the File Repository you may want to create a token, that will allow you to fully
manage everything. We already knew about such case and we’re prepared for it! ;-)

57

File Repository Documentation, Release 2

./bin/console auth:generate-admin-token
Generating admin token...
========================
Form:
[Role] -> security.administrator

Response:
========================
{

"tokenId": "1B3B15EC-18E9-45DD-846B-42C5006E872A",
"expires": "2029-02-11 07:24:42"

}

In this case “1B3B15EC-18E9-45DD-846B-42C5006E872A” is your administrative token, pssst. . . keep it safe!

Generating a normal token

It is considered a very good practice to minimize access to the resources. For example the server which will be storing
backups on the File Repository should only be allowed to send backups, not deleting for example.

For such cases you can generate a token that will allow access to specified collections and limit actions on them.

./bin/console auth:create-token --help
Description:

Creates an authentication token

Usage:
auth:create-token [options]

Options:
--roles=ROLES
--tags=TAGS
--mimes=MIMES
--max-file-size=MAX-FILE-SIZE
--expires=EXPIRES Example: 2020-05-01 or +10 years

-h, --help Display this help message
-q, --quiet Do not output any message
-V, --version Display this application version

--ansi Force ANSI output
--no-ansi Disable ANSI output

-n, --no-interaction Do not ask any interactive question
-e, --env=ENV The Environment name. [default: "dev"]

--no-debug Switches off debug mode.
-v|vv|vvv, --verbose Increase the verbosity of messages: 1 for normal

→˓output, 2 for more verbose output and 3 for debug

Help:
Allows to generate a token you can use later to authenticate in application for a

→˓specific thing

Example of generating a token with specified roles:

./bin/console auth:create-token --roles upload.images,upload.enforce_no_password --
→˓expires="+30 minutes"
========================
Form:

(continues on next page)

58 Chapter 13. Shell access

File Repository Documentation, Release 2

(continued from previous page)

[Role] -> upload.images
[Role] -> upload.enforce_no_password

Response:
========================
{

"tokenId": "A757A8CB-964F-4F7B-BB70-9DB2CF524BB9",
"expires": "2019-02-11 08:01:00"

}

Deleting expired tokens

This should be a scheduled periodic job in a cronjob, that would delete tokens that already are expired.

./bin/console auth:clear-expired-tokens
[2019-02-05 08:07:01] Removing token 276CCE10-00C5-4CB6-9F9A-87934101BACE

13.1. Introduction 59

File Repository Documentation, Release 2

60 Chapter 13. Shell access

CHAPTER 14

General guide for Administrators, DevOps and Developers

There is a general guide on how to maintain a backup server, what is the common approach to setup a server from
Riotkit template and more.

The guide is on a separate repository: https://github.com/riotkit-org-education/guide

Check also our RiotKit Education organization at https://github.com/riotkit-org-education , where we teach basic and
mid-advanced things.

61

https://github.com/riotkit-org-education/guide
https://github.com/riotkit-org-education

File Repository Documentation, Release 2

62 Chapter 14. General guide for Administrators, DevOps and Developers

CHAPTER 15

From authors

Project was started as a part of RiotKit initiative, for the needs of grassroot organizations such as:

• Fighting for better working conditions syndicalist (International Workers Association for example)

• Tenants rights organizations

• Various grassroot organizations that are helping people to organize themselves without authority

Technical description:

Project was created in Domain Driven like design in PHP 7, with Symfony 4 framework. There are API tests written
in Postman and unit tests written in PhpUnit. Feel free to submit pull requests, report issues, or join our team. The
project is licensed with a MIT license.

RiotKit Collective

63

	First steps
	Manual installation
	Installation with docker
	Post-installation
	Configuration reference
	Application configuration
	Permissions list
	Docker container extra parameters
	PostgreSQL support

	Docker, releases and versioning
	Using postman to manage the application
	Authorization
	Creating a token
	Looking up a token
	Revoking a token

	Files storage
	Security
	Uploading
	Downloading
	Aliasing filenames (migrating existing files to File Repository)
	Hotlink protection - personalizing URLs for your visitors
	Listing and searching

	Backup
	Getting started
	Managing collections
	Authorization
	Backups: Upload, deletion and versioning
	Data replication
	Managing collections from shell

	MinimumUI
	Quick start in steps
	Endpoints

	Bahub API client
	Configuration reference
	Basic usage
	Monitoring errors with Sentry
	Notifications
	Setup
	Using docker container
	Using bare metal

	Shell access
	Introduction

	General guide for Administrators, DevOps and Developers
	From authors

